
1 C 824 C2 A2 no. 130: 64 v. 3 c. 2 LIBRARY UNIVERSITY OF CALIFORNIA DAVIS

State of California THE RESOURCES AGENCY partment of Water Resources

BULLETIN No. 130-64

HYDROLOGIC DATA: 1964

Volume III: CENTRAL COASTAL AREA

JUNE 1966

AUG 1 1960

HUGO FISHER Administrator The Resources Agency EDMUND G. BROWN Governor State of California WILLIAM E. WARNE Director Department of Water Resources

State of California THE RESOURCES AGENCY Department of Water Resources

BULLETIN No. 130-64

HYDROLOGIC DATA: 1964

Volume III: CENTRAL COASTAL AREA

JUNE 1966

LIBRARY UNIVERSITY OF CALIFORNIA DAVIS

HUGO FISHER Administrator The Resources Agency EDMUND G. BROWN Governor State of California WILLIAM E. WARNE Director Department of Water Resources

FOREWORD

Bulletin No. 130 is designed to present comprehensive and accurate hydrologic data to the public. The bulletin is published annually in five volumes, each volume reporting data for a specific area of the State. Volume III, "Central Coastal Area", presents data from the area depicted on page iii.

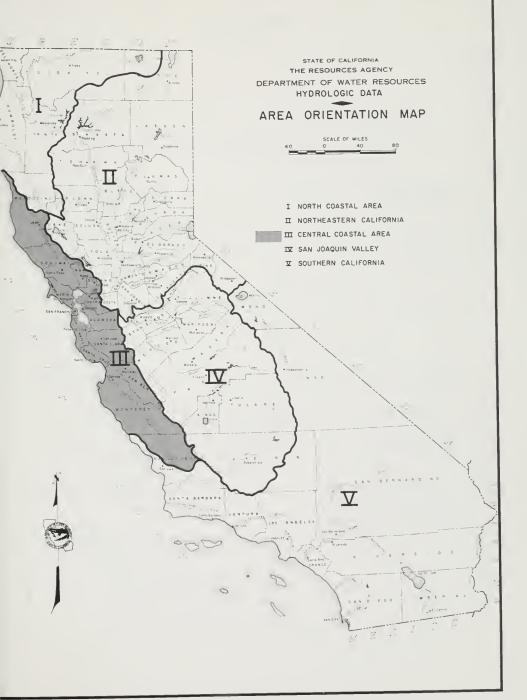
The collection and publication of these data are authorized by Sections 225, 229, 230, 345, 12609, and 12616 of the Water Code of the State of California.

Collection of much of the data presented has been possible only because of the generous help of other agencies. Their assistance has enabled us to make Bulletin No. 130 more complete and accurate. Acknowledgments of agencies who have directly contributed to Bulletin No. 130-164, Volume III, are made in each appendix.

5 Sham

William E. Warne, Director Department of Water Resources The Resources Agency State of California

ORGANIZATION OF BULLETIN NO. 130 SERIES


Volume I - NORTH COASTAL AREA Volume II - NORTHEASTERN CALIFORNIA Volume III - CENTRAL COASTAL AREA Volume IV - SAN JOAQUIN VALLEY Volume V - SOUTHERN CALIFORNIA

Each volume consists of the following:

TEXT and

1

Appendix	А	-	CLIMATE
Appendix	В	-	SURFACE WATER FLOW
Appendix	С	-	GROUND WATER MEASUREMENTS
Appendix	D	-	SURFACE WATER QUALITY
Appendix	Е	_	GROUND WATER QUALITY

METRIC CONVERSION TABLE

ENGLISH UNIT	EQUIVALE	NT METRIC UNIT
Inch (in)	2.54	Centimeters
Foot (ft)	0.3048	Meter
Mile (mi)	1.609	Kilometers
Acre	0.405	Hectare
Square mile (sq. mi.)	2.590	Square kilometer
U.S.gallon (gal)	3.785	Liters
Acre foot (acre-ft)	1,233.5	Cubic meters
U.S. gallon per minute (gpm)	0.0631	Liters per second
Cubic feet per second (cfs)	1.7	Cubic meters per minute

Page

ORGANIZATION OF BULLETIN NO. 130 SERIES	iv
AREA ORIENTATION MAP	v
METRIC CONVERSION TABLE	vi
ORGANIZATION	xi
DATA COLLECTION ACTIVITIES	1
Climate	1
Surface Water Flow	2
Ground Water Measurements	2
Surface Water Quality	5
Ground Water Quality	5

APPENDIXES

Appendix Number

Α.	CLIMATE
	Acknowledgments
	Introduction
	Drainage Basin Designation
	Alpha Order Number and Subnumber
	Climatological Station Index
	Interim Monthly Precipitation
	Seasonal Precipitation
	Interim Monthly Temperature
	Monthly Temperature
	Interim Monthly Evaporation
	Monthly Evaporation
в.	SURFACE WATER FLOW
Б.	Acknowledgments
	Maximum and Minimum Tides
	bally neur ploenarge of the tot the tot to the
	Surry neur bage nergate to
	Imports 44 Numbering System of Recording Stations 44
	Mumbering system of Recording stations

APPENDIXES (Continued)

Appendix Number

С.	GROUND WATER MEASUREMENTS	53
	Acknowledgments	55
	Introduction	56
	Description of Selected Wells	56
	State Well Number	56
	Agency Well Number	57
	Agency Supplying Data	57
	Well Use	60
	Well Depth	60
	Data Available	60
	Record Begins and Ends	61
	Ground Water Levels at Wells	61
	Ground Surface Elevation	61
	Date	61
	Ground Surface to Water Surface in Feet	62
	Water Surface Elevation in Feet	62
	Agency Supplying Data	62
D.	SURFACE WATER QUALITY	95
	Acknowledgments	97
	Introduction	98
	Laboratory Methods and Procedures	98
	Sampling Station Data and Index	98
	Analyses of Surface Water	99
	Summary of Coliform Analyses	99
	Spectrographic Analyses of Surface Water	99
	Radioassays of Surface Water	100
	Salinity Observations at Bay and Delta Stations	100
	Electrical Conductance	101
		101
Е.	GROUND WATER QUALITY	177
	Acknowledgments	179
	Introduction	180
	Analyses of Ground Water	180
	Radioassay of Ground Water	181
	indexeducing of offound matches i i i i i i i i i i i i i i i i i i i	

TABLES

Table Number

1	DATA COLLECTION ACTIVITIES Summary of Ground Water Data Collected in the Central Coastal Area, July 1, 1963 - June 30, 1964	4
	APPENDIX A - CLIMATE	
A-1	Climatological Station Index	14
A-2	Interim Monthly Precipitation, 1963	17
A-3	Seasonal Precipitation, 1963-64	19
A-4	Interim Monthly Temperature, 1963	23
A-5	Monthly Temperatures, 1963-64	26
A-6	Interim Monthly Evaporation, 1963	35
A-7	Monthly Evaporation, 1963-64	37
	APPENDIX B - SURFACE WATER FLOW	
B - 1	Daily Maximum and Minimum Tides	47
в-2	Daily Mean Discharge	49
B-3	Daily Mean Gage Height	51
B-4	Surface Water Imports to the Central Coastal Area	52
	APPENDIX C - GROUND WATER MEASUREMENTS	
C-1	Ground Water Level Conditions in the Central Coastal Area,	
	Spring, 1964	63
C-2	Description of Selected Wells	
	North Coastal Region	64
	San Francisco Bay Region	65
C-3	Central Coastal Region	67
0-5	North Coastal Region	70
	San Francisco Bay Region	74
	Central Coastal Region	83
	APPENDIX D - SURFACE WATER QUALITY	
D-1	Sampling Station Data and Index	102
D-2	Analyses of Surface Water	1.0.1
	North Coastal Region (No. 1)	104
	San Francisco Bay Region (No. 2)	112 131
	Central Coastal Region (No. 3)	163
D-3	South Bay Aqueduct	165
D-4	Spectrographic Analyses of Surface Water	166
~ (opered of the state of the stat	100

TABLES

Table Number		Page
	APPENDIX D - SURFACE WATER QUALITY (Continued)	
D-5	Radioassays of Surface Water	167
D-6	Description of Salinity Observation Stations and	
	Maximum Observed Salinity at Bay and Delta Stations	171
D - 7	Salinity Observations at Bay and Delta Stations	172
E-1	APPENDIX E - GROUND WATER QUALITY Analyses of Ground Water	
	North Coastal Region (No. 1)	182
	San Francisco Bay Region (No. 2)	185
	Central Coastal Region (No. 3)	209
E-3	Radioassays of Ground Water	219

FIGURES

Figure Number

	APPENDIX C
C-1	Fluctuation of Water Levels in Wells
	North Coastal Region
	San Francisco Bay Region
	Central Coastal Region

APPENDIX D

D-1	Electrical Conductance - Daily Mean	
	Alameda Creek near Niles (Station 73)	182
D-2	Electrical Conductance - Daily Readings at 1300 Hours	
	Bethany Forebay at South Bay Pumping Plant (Station 207)	183

PLATES

(Plates are bound at end of report)

<u>Plate No.</u>

1	Climatological Stations in the Central Coastal Area, 1964
2	Surface Water Measurement Stations in the Central Coastal Area, 1964
3	Ground Water Basins or Units in the Central Coastal Area, 1964
4	Surface Water Quality Stations in the Central Coastal Area, 1964
5	Status of Sea-Water Intrusion, Santa Clara Valley, East Bay Area, 1964

STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES

EDMUND G. BROWN, Governor HUGO D. FISHER, Administrator, The Resources Agency WILLIAM E. WARNE, Director, Department of Water Resources ALFRED R. GOLZE', Chief Engineer JOHN R. TEERINK, Assistant Chief Engineer, Area Management

- - - - 0 - - - -

SAN FRANCISCO BAY DISTRICT

Charles A. McCullough District Director Vernon Bengal Chief, Water Supply and Quality Section

Activities covered by this report were under the supervision

of

Glenn R. Peterson Supervisor, Water Supply Unit

Assisted by

John C. Etchells Water Resources Engineering Associate
John S. Bartok Water Resources Technician II
Larry K. Gage Assistant Civil Engineer
Kenneth R. Hamilton Assistant Civil Engineer
Dale L. Zeiders Assistant Civil Engineer
Lloyd J. Grant Junior Civil Engineer
Michael L. Helm Junior Civil Engineer

Reviewed and coordinated by Statewide Planning Office Data Coordination Branch

xi

DATA COLLECTION ACTIVITIES

The Department of Water Resources, in cooperation with federal, state, and local agencies, as well as with the generous and public-spirited assistance of many individuals, has gradually developed a continuing program of basic hydrologic data collection. This continuity enables systematic and orderly handling, filing, and publication of the data for all uses both now and in the future.

The data collection activities involve the maintenance of a network of stations adequate to provide reliable, meaningful, representative, and needed information. The number of stations in the network is maintained at a minimum needed for general evaluation of water conditions and for a long term base for water management and planning purposes. Water samples or water measurements are taken at these stations, chemical analyses of the samples are made and the data are compiled, analyzed, summarized, and published. These data include information on climate, surface water flows and tidal stages, ground water levels, and chemical quality of surface and ground waters. The climate data include precipitation, air temperature, wind movement, and evaporation. Pacific Standard Time is used throughout the report.

CLIMATE

The reporting period for climatologic data was changed in this report from a fiscal year, July 1 through June 30, to a water year, October 1 through September 30, to make the period the same as for surface water flow and surface water quality data. Climatologic data for the period July 1, 1963, through September 30, 1963, are also included in this 1964 report.

-1-

The climatology station network shown on Plate 1, "Climatological Stations in the Central Coastal Area", includes stations established by the U. S. Weather Bureau and the Department of Water Resources. The Department supplements the Weather Bureau network of 143 stations with a network of 75 selected stations which are operated by individual, private industry and governmental agencies. Data from these 218 stations are tabulated in Appendix A of this report.

SURFACE WATER FLOW

The four surface water stations shown on Plate 2 are operated by the Department of Water Resources. In addition, the Department cooperates with the United States Geological Survey in the operation of 58 of the 114 stations operated by that agency in the area covered by this report. Also, the United States Coast and Geodetic Survey operates two tide stations in the area. The United States Geological Survey publishes data from the 114 stations in its water supply papers. There are a number of surface water stations operated by local agencies for local purposes from which data are not routinely collected by the Department. Data from the four stations and from Rector Reservoir and information on surface water imports into the area are tabulated in Appendix B.

GROUND WATER MEASUREMENTS

The Department cooperates with the U. S. Geological Survey and many local agencies for the systematic observation of ground water levels. The Department collects water level measurement data from approximately 1,700 wells in the Central Coastal Area. Data from 204 wells are presented in Appendix C of this report. These 204 wells were selected as representative of wells in the respective ground water basins or units. The wells were

-2-

selected on the basis of a number of factors such as geographical density of one or two wells per township; length of water level record; frequency of measurements; conformity with respect to water level fluctuations in the ground water basin or area, aquifer represented, and availability of a geologic log, mineral analyses, and production records.

The depth to water in most wells is usually a direct measurement made with a tape; however, in some wells, especially deep ones, measurements are made with an air line and gauge or an electric sounder. Field work was performed by local cooperators, the U. S. Geological Survey and Department personnel. The Department has full responsibility for reviewing, editing, processing and publishing ground water level data. An electric computer program has been developed to perform a part of the processing and tabulating.

Ground water basins or units in the Central Coastal area are shown on Plate 3. The number of wells measured in these areas and the measuring agency are shown in Table 1.

The data are summarized in Table C-1, "Ground Water Level Conditions in the Central Coastal Area", which presents average depths to ground waters, and average changes by basin and region from the spring of 1963 to the spring of 1964.

Water level fluctuations are depicted graphically on hydrographs of 22 wells distributed among significant basins of the area. These wells were selected insofar as possible as representative of their respective basins or units. The hydrographs are presented in Figure C-1 by region, basin, and well number.

-3-

TABLE : SUMMARY OF GROUND WATER DATA COLLECTED IN THE CENTRAL COASTAL AREA July 1, 1963 - June 30, 1964

Ground Water Basin or Unit	: Basin : Number	Measuring or Sampling Agency	: Number : Measured	of Wells : Sampled
		REGION 1		
Potter Valley	1-14.00	U. S. Geological Survey	2	
Ukiah Valley	1-15.00	U. S. Geological Survey Mendocino County	2	11
Sanel Valley	1-16.00	U. S. Geological Survey Mendocino County	3	b
Alexander Valley	1-17.00	U S. Geological Survey Department of Water Resources	6	6
Santa Rosa Valley Santa Rosa Arca	1-18.00 1-18.01	U. S. Geological Survey	3	
Healdsburg Area	1-18.02	Department of Water Resources U. S. Geological Survey Department of Water Resources	12 4	22
Lower Russian River Valley	1-98.00	U. S. Geological Survey	3	I
		REGION 2		
Petaluma Valley	2-1.00	U. S. Geological Survey Sonoma County F. C. & W. C. D.	3	15
		Department of Water Resources	3	4
Napa-Sonoma Valley	2-2.00			
Napa Valley	2-2.01	U. S. Geological Survey Napa County	4	
		Department of Water Resources		26
Sonoma Valley	2-2.02	U. S. Geological Survey Sonoma County F. C. & W. C. D.	3	10
		Department of Water Resources	2	
Suisun-Fairfield Valley	2-3.00	U. S. Geological Survey	2	
		Solano County Department of Water Resources	73	11
D11 D2.1	2 (~	
Pittsburg Plain	2-4.00	Department of Water Resources		3
Clayton Valley	2-5.00	Department of Water Resources		8
ignacio Valley	2-6.00	Department of Water Resources	5	7
Santa Clara Valley	2-9.00			
East Bay Area	2-9.01	Alameda County Water District Alameda County F. C. & W. C. D. Department of Water Resources	77 59 3	73 24
South Bay Area	2-9.02	U. S. Geological Survey	3 259	22
		Santa Clara Valley W. C. D.		
Livermore Valley	2-10.00	Alameda County F. C. & W. C. D.	177	37
Half Moon Bay Terrace	2-22.00	Department of Water Resources	8	
San Gregorio Valley	2-24.00	Department of Water Resources	5	
Pescadero Valley	2-26.00	Department of Water Resources REGION 3	7	
West Santa Cruz Terrace	3-26.00	Santa Cruz County	7	
Soquel Valley	3-1.00	Santa Cruz County Department of Water Resources	5	
Pajaro Valley	3-2.00	Monterey County F. C. & W. C. D. Santa Gruz County City of Watsonville	19 56 6	15
		Department of Water Resources	14	17
Gilroy-Hollister Valley South Santa Clara County	3-3.00 3-3.01	South Santa Clara County W. C. D.	25 16	
		Santa Glara Valley W. C. D. Department of Water Resources	20	13
San Benito County	3-3.02	City of Gilroy Pacheco Pass Water District and San Benito County	5	
		Department of Water Resources	5	14
Salinas Valley	3-4.00	Monterey County F. C. & W. C. D. San Luis Obispo County	437 51	70 31
Carmel Valley	3-7.00	Monterey County F. C. & W. C. D.	37	9
and a race of	5-7100	nuncerey dounty r. o. o w. or b.		

SURFACE WATER QUALITY

Surface water was sampled and analyzed both by the Department of Water Resources and by the U. S. Geological Survey in cooperation with the Department. The data from these sampling activities are shown in Appendix D of this report. The appendix includes data from a network of basic monitoring stations, operational stations on the South Bay Aqueduct and investigational stations. It includes all of the surface water quality data collected by this Department in the Central Coastal Area, except data from investigational stations in the San Francisco Bay system below Antioch. These data are specialized in nature and not included in this report. The stations for which data are reported in Appendix D are shown on Plate 4.

GROUND WATER QUALITY

During the year from July 1, 1963, through June 30, 1964, ground water samples were collected from 455 wells in the Central Coastal Area. These wells or stations were selected by the Department in the areas shown on Plate 3. Table 1 indicates the number of wells sampled in each basin and the sampling agency. The data from these stations are tabulated in Appendix E of this report.

Plate 5 depicts the status of sea water intrusion in the East Bay area of Santa Clara Valley. The 1964 line showing 350 parts per million chloride concentration is based on the spring 1964 analyses of samples from monitored wells shown on this plate. The 1962 line is based on the spring 1962 analyses for essentially the same station network.

Ground water is sampled and analyzed to provide information on the quality characteristics, to identify problem areas, to determine the quality

-5-

trends, and if possible, to identify the factors that control or affect the quality. Analyses made of ground water include mineral and radiological determinations. The frequency of sampling, types of analyses and density of the station network depend largely on conditions in the area being monitored.

APPENDIX A

CLIMATE

ACKNOWLEDGMENTS

The Department of Water Resources gratefully acknowledges the assistance and contributions of the many public agencies, private organizations, and individuals whose cooperation greatly facilitated the preparation of this appendix. Special mention is made of the following agencies:

Federal

United States Weather Bureau United States Army Corps of Engineers

State

California Division of Highways

Local

Campbell Water Company

Livermore, City of Marin County Engineer Marin Municipal Water District Napa, City of Santa Clara County Flood Control and Water District Santa Clara Valley Water Conservation District

Vallejo, City of

INTRODUCTION

This appendix contains station index, interim monthly precipitation, seasonal precipitation, interim monthly temperatures, monthly temperatures, interim monthly evaporation, and monthly evaporation tables. The tables of interim values present data for the months of July, August, and September 1963 and were necessitated by the change in report period from fiscal year (July through June) to water year (October through September). The data compiled are provided by governmental agencies, private industry and individuals. Symbols and abbreviations used in this appendix are:

В	Adjusted to a full month.
С	Data from recorder stations.
D	Data unavailable for this report.
Е	Evaporation.
е	Wholly or partially estimated.
М	All or part of record missing. When used in place of an
	average monthly temperature value, more than ten days of
	record are missing.
NR	No record.
Р	Precipitation.
RB	Beginning of record.
RE	End of record.
SS	Observation at sunset.

T Temperature.

T Trace, an amount too small to measure.

V Includes total for previous month.

Var Observation time varied.

The numbering system used by the Department was developed to facilitate station identification by data processing machines. Station numbers are composed from three components - the drainage basin number, the alpha order number and the subnumber.

Drainage Basin Designation

The State was divided into major hydrographic areas, and each of these areas was assigned an alphabetical letter which is the first digit of the drainage basin number. The second digit was obtained by dividing the major hydrographic areas into stream basins of primary importance and assigning a number of 0-9 with 0 generally being the valley floor.

The major hydrographic areas and the sub-areas which are reported in this volume are as follows:

Hydrographic Area D

D0 -	Santa Cruz	Coast	D3	-	Upper Salinas River
D1 -	Pajaro-San	Benito Rivers	D4	-	Monterey Coast
D2 -	Lower Sali	nas River			

Hydrographic Area E

ΕO	-	San Francisco	Вау	E4	~	East Bay
Ε1	-	Coast-Marin		E5	-	Alameda Creek
E2	-	Marin-Sonoma		E6	-	Santa Clara Valley
E3	-	Napa-Solano		E7	-	Bayside-San Mateo
				E8	-	Coast-San Mateo

Hydrographic Area F

F8 - Mendocino Coast F9 - Russian River

Alpha Order Number and Subnumber

The four-digit alpha order numbers are assigned each station to denote its order in alphabetical sequence, mainly for machine processing. As the collection of data progressed, it was found necessary to add a subnumber of two digits to the four-digit alpha number to maintain the alphabetical order of all station names.

Climatological Station Index

Table A-1 includes the station name, number, and the county in which each station is located. It also includes the observer's name, station location, and elevation of the station. The time of observation, beginning of record, and cooperator number complete the information on this table. The cooperator number indicates the source of the data. The cooperator numbers assigned are as follows:

- 000 Private Cooperator
- 403 Sonoma County Flood Control and Water Conservation District
- 407 San Benito County
- 411 Marin County
- 413 Marin Municipal Water District
- 414 Santa Clara Valley Water Conservation District
- 418 Vallejo Water Department
- 426 Santa Clara County Flood Control and Water District
- 801 Pomology Department, U. C., Davis
- 804 State Department of Beaches and Parks
- 806 State Department of Water Resources
- 808 State Division of Forestry
- 809 State Division of Highways
- 900 U. S. Weather Bureau
- 901 Corps of Engineers, San Francisco District
- 902 U. S. Air Force
- 907 State Climatologist (unpublished USWB)
- 909 U. S. Soil Conservation Service

Interim Monthly Precipitation

Table A-2 presents total monthly precipitation in inches for the months of July, August, and September 1963.

Seasonal Precipitation

Table A-3 presents total monthly and seasonal precipitation in inches for the year from October 1, 1963 through September 30, 1964.

Interim Monthly Temperatures

Table A-4 for the period July through September 1963 includes the maximum and minimum temperatures, the average of the daily maximum temperatures, the average of the daily minimum temperatures and the average of the daily maximum and minimum temperatures recorded during the month. The temperatures are recorded in degrees Fahrenheit.

Monthly Temperatures

Table A-5 presents the same type of temperature data as in Table A-4 but for the period October 1, 1963 through September 30, 1964.

Interim Monthly Evaporation

Table A-6 presents total evaporation during each month in inches, total wind movement during the month in miles, the monthly average of daily maximum water temperatures and the monthly average of daily minimum water temperatures for the period July through September 1963.

Monthly Evaporation

Table A-7 presents the same type of data as in Table A-6 but for the period October 1, 1963 through September 30, 1964.

TABLE A-1 CLIMATOLOGICAL STATION INDEX

STATION NAME	STA NUMBER	COUNTY	OBSERVER	LA		UDE	LON	IGITI	noe ''	ELEV IN FEET	TOWNSHIP	RANGE	SECTION	TRACT		TIM E OF ER VA T		RECORD	
Alamitos Perc. Pond Alamo 1N Almaden Reservoir Alpine Dam Angwin Pac. Union Col.	E6 0053 E4 0064 E6 0125 F9 0135 E3 0212	Santa Clara Contra Costa Santa Clara Marín Napa	SCVWC0 Cuzzello SCVWCD MMWD Pacific Union Col	37 37 37 37 37 38	15 52 10 56 34	18 00 30 18	145 122 121 122 122	52 01 50 38 26	18 00 18 12	200 410 640 680 1815	85 15 95 1N 8N	1E 2W 1E 1 7W	1	F Q E Q	9A 7A 8A M 8P	9A 7A 8P	9A	1959 1957 1936 1925 1939	426 900 426 413 900
Arroyo Seco Atascadero HMS Atlas Road Ben Lomood Berkeley	02 0322 D3 0360-01 E3 0372 D0 0674 E4 0693	Monterey San Luis Obispo Napa Santa Cruz Alameda	R. Billings J. Ellis G. Dutra N. Shaw U. of Calif.	36 35 38 37 37	14 27 25 05 52	30	121 120 122 122 122	29 38 15 06 15	24	800 940 1735 504 299	195 285 7N 105 15	12E 4			C 8A C 5P C	8A 5P 8P		1931 1948 1940 1937 1887	900 809 900 900 900
Berryesss 1 E (Toyon Ave.) Big Sur State Park Black Mountain 2 SW Blakes Landing Bon Tempe Dam	E6 0706 D4 0790 E6 0850 F9 0876 F9 0969	Santa Clara Honterey Santa Clara Marin Marin	H. Mitchell Park Ser. M. Incerpi H. Angress MMWD	37 36 37 38 37	23 15 18 11 57	42 24	121 121 122 122 122	50 47 10 55 36	00 36	205 240 2330 40 723	6S 19S 7S 1N 1N	1E 2 2E 3 3W 3 10W 1 7W 1	30 36 13	Ρ	5P 8A 9A 8A M			1921 1914 1943 1956 1958	901 900 900 000 413
Soonville HMS Soonville-Farrer Bouchers Gap Bradley Sueus Vista	F8 0973 F8 0973-02 D4 0998-27 D3 1034 01 1170	Mendocino Mendocino Monterey Monterey Sao Senito	Div. of Highways J. Farrer B. Alexander Div. of Forestry A. Churchill	39 39 36 35 36	01 00 21 52 46	45	123 123 121 120 121	22 22 51 48 11	10	342 395 2050 540 1640	13N 13N 18S 24S 13S	14W 1E 2	8	F	8A 9A 8A 8A C			1936 1951 1960 1946 1932	900 901 000 900 900
Burliogame Burton Ranch Buzzard Lagoon Calaveras Reservoir Calero Reservoir	E7 1206 E4 1216 01 1247 E5 1281 E6 1285	San Mateo Contra Costa Santa Cruz Alameda Santa Clara	Burlingame R. Stirton O. Nohrden O. McCarthy SCVWCD	37 37 37 37 37 37	35 52 02 29 10	12 48	122 122 121 121 121	21 05 50 49 45	06 48	10 530 1275 805 500	4S 1S 10S 5S 9S	1E 2 1E 2	26 24	M M E	4P 8A 6P 7A 8A	4P	4P	1946 1955 1959 1874 1958	900 900 000 900 414
Calistoga Cambrian Park Campbell Water Co. Carmel Valley Cozadero	E3 1312 E6 1341-10 E6 1377-01 D4 1534 F9 1602	Napa Santa Clara Santa Clara Monterey Sonoma	J. Schou SCVWCD Campbell Water Co A. Collius N. Borotre	38 37 37 36 38	35 15 17 29 32	12	122 121 121 121 121 123	35 55 57 44 07	24	365 225 192 425 1040	9N 8S 7S 17S 8N	7W 3 1W 1 1W 3 2E 12W 1	2 35 5	8 C	7A 7A 5P 5P 5P	5 P		1873 1962 1897 1957 1939	900 414 000 900 900
Chittenden Pøss Chittenden Clænsga Cloverdale 3 SSE Cloverdale 11 W	01 1739 01 1739-01 D1 1766 F9 1838 F9 1840	San Seuito Santa Cruz San Benito Sonoma Sonoma	V. Haskin H. Chadwell A. Smith J. Byrd F. Ornbaun	36 36 36 38 38	54 54 42 46 46	08 54	121 121 121 122 123	36 36 20 59 13	17 48	125 104 900 320 1820	12S 12S 14S 11N 11N	3E 1 3E 1 6E 1 10W 2 12W 1	11 18 29	K 8	8A 8A 8A 8A C	8A		1945 1960 1950 1950 1939	900 000 407 900 900
Concord 3 E Conn Coyote Dam-Lake Mendocino Coyote Reservoir Crest Ranch	E4 1962 E3 1976 F9 2105 E6 2109 00 2159	Conta Costa Napa Mendocino Santa Clara Santa Cruz	N. Lee City of Naps C.O.E. SCVWCO H. Nizlson	37 38 39 37 37	58 28 11 05 05	50 06 06	121 122 123 121 122	59 22 11 32 08	30 24 00	200 225 784 800 2640	1N 7N 16N 10S 10S	12W 3	34 9	N C R	88 88 88 98 88	8A 9A	8A 9A	1954 0 1960 1938 1948	900 000 901 900 000
Crockett Gavenport Del Monte Duttons Landing Evergreen-Silver Ck. Rd.	E4 2177 00 2290 02 2362 E3 2580 E6 2919	Contra Costa Sauta Cruz Monterey Napa Santa Clara	C & N Sugar F. Tacke USN School D. Steele R. Long	38 37 36 38 37	02 01 36 12 19		122 122 121 122 122	13 12 52 18 02		12 273 46 20 340	3N 10S 15S 4N 7S	3W 3 3W 3 1E 4W 1 2E 2	10	Q	8A 8A C 8A 7A	88 88 88	8.8	1918 1910 1911 1955 0	900 900 900 900 900 000
Fairfield Fairfield Police Station Fort Bragg Aviation Fort Bragg Aviation Fort Ross	E3 2933 E3 2934 F8 3161 F8 3164 F8 3191	Solano Solano Mendocino Mendocino Sonoma	Co. Surveyor Police Dept, Cal. West. RR W.8. Dbserver C. Call	38 38 39 39 39 38	15 15 27 24 21		122 122 123 123 123	03 03 48 49 15		15 19 80 61 116	5N 5N 18N 18N 8N	2W 2 2W 2 17W 18W 2 12W 3	26 7 25	0	C 4P 8A 11P 6P	4P 8A 11F 61		1940 1951 1895 1940 1874	900 900 900 900 900
Freedom 8 NNW Fremont Peak State Park Gerber Ranch Gilroy Gilroy 8 NE	01 3232 D1 3238 E5 3387 D1 3417 01 3419	Senta Cruz San Benito Santa Clara Santa Clara Santa Clara	Westminster L. Seavenue P. Gerber Fire Dist. W. Kickham	37 36 37 37 37	03 46 22 00 02	18 00	121 121 121 121 121 121	49 28 29 34 26		1495 2500 2140 194 1050	10s 13s 6s 11s 10s	1E 2 4E 3 4E 3 4E 5E 2	35 36 6	P	C 8A 8A 9A C	8A 9A		1952 1950 1912 1957 1942	900 901 900 900 900
Gilroy 14 ENE Conzales 9 ENE Graton Craton 1 W Green Valley	D1 3422 D2 3502 F9 3577 F9 3578 E3 3612-01	Sents Clara Sen Senito Sonoma Sonoma Solano	S. Auter A. Sogue L. Hallberg N. Parnell E. Marshall	37 36 38 38 38	06 33 25 26 17	54	121 121 122 122 122	20 18 51 53 10	48	1350 2350 200 210 414	10S 16S 7N 7N 5N	6E 6E 1 9W 2 9W 2 3W	15		8A C 7A 6P 8A	7A 6P		1940 1943 1928 1896 1893	900 900 000 900 418
Gusdelupe Reservoir Guerneville Haif Noon Say 2 NNW Hames Valley Røyward 6 ESE	E6 3681 F9 3683 E8 3714 03 3722 E4 3863	Saota Clara Sonoma Sen Mateo Monterey Alameda	SCVWCD J. Buttner Dept. of Agr. Mrs. H. Frudden N. Drennsn	37 38 37 35 37	12 30 29 52 39	45	121 123 122 120 121	53 00 27 54 58	27	450 115 60 720 925	8 S 8N 5S 23S 3S	1E 2 10W 2 5W 1 10E 2 1W 2	25 19 29	Q	8A 8A 7A 5P C	7A		1936 1939 1939 1963 1963	414 900 900 913 900
Healdsburg 2 E Healdsburg 2 E Hernander 7 SE Hollister Kollister Costa	F9 3875 F9 3878 D1 3928 D1 4022 D1 4022-10	Sonoma Sonoma San Benito San Benito San Benito	Fire Dept. W. Iverson C. Akers Nollister DWR - L&WU	38 38 36 36 36	37 37 18 51 55	15	122 122 120 121 121	50 50 42 24 26	46	101 102 2765 285 170	9N 9N 19S 12S 11S	9W 1 9W 12E 5E 5E 3	6	P	6P 8A C SP Var	6P 5P	Var	1877 1943 1940 1874 1962	900 900 900 900 900 806
Hollister No. 2 Hollister 10 ENE Hopland Lwrgo Station Inverness-Mery Kellogg	01 4025 D1 4035 F9 4100 F9 4277 F9 4480	San Benito San Benito Mendocino Marin Sonoma	Hollister E. Hubbell C. Crawford M. Mery R. Rubinow	36 36 39 38 38	51 55 01 05 40	24	121 121 123 122 122	24 14 07 51 40	06	284 3000 550 150 1800	12S 12S 13N 3N 9N	12W 9W	5 9		C C 8A 2N 8A	5P		1938 D 1948 1951 1936	900 900 900 900 900 900

TABLE A-I CLIMATOLOGICAL STATION INDEX

STATION NAME	STA NUMBER	COUNTY	OBSERVER	LA	гіті ,		LON	G I T I	JDE	ELEV IN FEET	TOWNSHIP	RANGE	40 ACRE	OB P	TIM OF SERV	-	RECORD	
Kentfield Kent Lake King City Lafayette 2 NNE Lagunitas Lake	E2 4500 F9 4502 D2 4555 E4 4633 F9 4652	Marin Marin Monterey Contra Costa Marin	H. Muller MMD Div. of Forestry R. Sanborn MMVD	37 37 36 37 37 37	57 59 12 55 56	54 48	122 122 121 122 122	33 42 08 06 35	30 42	90 360 320 540 785	1N 2N 2OS 1N 1N		8	9/)* 51 8/ 0	SP		1888 1954 1887 1956 1881	900 413 900 900 413
La Honda Lake Curry Leroy Anderson Dam Lexington Reser our Linn Ranch	£8 4660 £3 4677 £6 4916 £6 4922 D3 4963	San Mateo Solano Santa Clara Santa Clara San Luis Obispo	J. Allen J. Lynch SCVWCD SCVWCD O. Linn	37 38 37 37 35	19 21 09 10 41	18 48 36 06	122 122 121 121 121 120	16 07 37 59 43	18 48 18 24	670 396 700 700 870	75 6N 95 95 265	4W 1 2W 1 3E 1 1W 12T	9	61 8A 8A 8A 8A 51	8A	8.4	1950 1926 1950 1951 1925	900 418 414 414 000
Livermore Scwage Plant Livermore 2 SSW Lockwood 2 N Los Gatos Los Gatos-Old Orchard Rd.	E5 4996 E5 4997 03 5017 E6 5123 E6 5123-04	Alameda Alameda Monterey Santa Clara Santa Clara	Livermore M. Quaterman A. Weferling Los Catos R. Roll	37 37 35 37 37	41 39 58 14 14	28	121 121 121 121 121 121	48 47 05 57 55	20	405 545 1104 428 285	3S 3S 22S 8S 8S	1E 1 2E 2 8E 3 1W 2 1W 2	0 4 1 P	7 A 7 A 8 A 5 E 7 A	7A	7 A	1961 1871 1940 1885 1963	000 900 900 900 414
Los Catos 4 SW Lucia Willow Springs Mart Island Martinez 3 S Martinez 3 SSE	00 5125 D4 5184 E3 5333 E4 5371 E4 5372	Santa Clara Monterey Solano Contra Costa Contra Costa	I. Miller Oiv. of Highways W. Cavanaugh M. Plummer C. Weaver	37 35 38 37 37	11 53 06 58 58	00	122 121 122 122 122	02 27 16 08 06	12	2215 355 52 225 280	95 45 3N 2N 2N	2W 5E 3W 2W 2W	1 5	9A C C 8A	С		1957 1941 1867 1941 1956	900 900 900 900 900 900
Martinez Fire Station Mill Valley Monterey Morgan Hill 2 E Norgan Hill 6 MNW	E4 5377 E2 5647 D4 5795 E6 5844 E6 5846	Contra Costa Marin Monterey Santa Clara Santa Clara	Fire Dept. County Engr. R. Johnson T. Downer M. Rose	38 37 36 37 37	01 53 36 08 09	48	122 122 121 121 121	08 31 54 37 46	36	26 10 335 225 660	2N 1N 155 95 95	2W 6N 3 1E 3E 1E	1	9A 8A 85 8A 0			1891 1944 1878 1943 0	900 411 900 900 900
Morgan Hill SCS Morro Bay 3 N Mt. Oiablo North Gate Ht. Namilton Mount Madonna	01 5853 D6 5869 E4 5915 E5 5933 D1 5973	Santa Clara San Luis Obispo Contra Costa Santa Clara Santa Cruz	Cons. Ser. Std. Oil Co. Bch. & Parks W.8. Observer J. Schell	37 35 37 37 37	08 25 52 20 01		121 120 121 121 121	39 51 56 39 43		350 670 2100 4206 1800	95 295 15 75 105	3E 2 10E 1 1W 1 3E 2E 3	2	(* C 7A 11F C	11P		1945 1959 1952 1881 1945	900 900 900 900 900 900
Mt. Nadonna Co. Park Mt. Tamalpais 2 SW Muir Woods Napa Napa-Haven	01 5973-11 E2 5996 E2 6027 E3 6065 E3 6068	Santa Clara Marin Marin Napa Napa	W. Foss Bch. & Parks Park Ser. E. Gipson D. Haven	37 37 37 38 38	01 54 54 18 17	30	121 122 122 122 122	43 36 34 17 17	48	1880 1480 170 16 30	11S 1N 1N 5N 5N	2E 7W 6W 4W 4W 1		8A C 9A 7 A 8A			1937 1959 1940 1945 1931	909 900 900 900 900
Napa State Hospital Nawarro 1 NW Newark Nicasio Novato 8 WNW	E3 6074 F9 6105 E5 6144 F9 6187 E2 6290	Napa Mendocino Alameda Marin Marin	J. Allemant Masonite Co. Leslie Seit NEWD E. Thompson	38 39 37 38 38	17 10 31 04 08		122 123 122 122 122	16 34 02 42 43		60 220 14 240 350	5N 15N 5S 3N 4N	4W 1 15W 2W 8W 8W 2	7	SE C 8A M C	8A	8A	1877 1958 1891 1943	900 900 900 413 900
Novato Fire House Oakland WBAP Oakville 1 WRW Oakville 4 SW Oakville 4 SW No. 2	E2 6290-02 E4 6335 E3 6351 E3 6354 E3 6356	Mərin Alameda Napa Napa Napa	E. Luders USWB A. Calkins R. Pleiner K. Nuckfeldt	38 37 38 38 38	06 44 27 23 24	30	122 122 122 122 122	33 12 25 28 28	42	18 3 160 1465 1685	3N 2S 7N 6N 6N	3W 5W 2 5W		6 6 0 0	С		1957 1939 1906 1940 1963	411 900 900 900 900
Occidental Faicines Ohrwall Ranch Palo Alto City Hall Paloma Parkfield	F9 6370 D1 6610 E7 6646 D2 6650 O3 6703	Sonoma San Benito Santa Clara Monterey Monterey	A. Slaney J. Ohrwall Engr. Dept. J. Sell N. Durhom	38 36 37 36 35	25 44 27 21 53		122 121 122 121 121 120	59 22 08 30 26		1000 950 23 1835 1482	7N 14S 6S 18S 3S	10W 3 SE 1 3W 4E 2 14E 3	2 1 3	7 A 8A 8A 5 E 7 A			1940 1924 1953 1940 1938	900 900 900 900 900
Parkfield 7 NNW Penitencia Rain Cage Petaluma F. S. No. 2 Petaluma-Burns Petaluma 1N	03 6705 E6 6791-43 E2 6826 E2 6826-01 E2 6829	Monterey Santa Clera Sonoma Sonoma Sonoma	R. Morrison G. Dodson Fire Dept. Burns V. Chaix	36 37 38 38 38	00 24 14 13 15	00 00	120 121 122 122 122	28 49 38 42 38	54 48	3590 260 16 240 30	22S 6S 5N 4N 5N	14E 1E 7W 3 8W 7W		0 7 A 5 F 8 A 0	5P		D 1962 1871 1959 1943	900 414 900 901 900
Pheonix Lake Dam Pico Blanco B. S. Camp Pinnacles National Mon. Pleasanton Nursery Point Arena	F9 6853 D4 6856 D2 6926 E5 6991-05 F8 7009	Marin Monterey San Benito Alamedø Mendocino	MGWD P. Harlan Park Ser. J. F. Lopez J. Moungovan	37 36 36 37 38	57 20 29 40 55	18 18	122 121 121 122 122	34 47 11 53 42	24 42	175 900 1310 345 122	185 175 35 -2N	2E 3 7E 1E 2 17W 1	2	N 8A 4P 8A 8A	4P 4:30)P	1937 1957 1937 1939 1940	413 000 900 000 900
Foint Piedras Blancas Port Chicago NAO Portola State Park Potter Valley 3 NFW Potter Valley 3 SE	D5 7024 E4 7070 E8 7086 F9 7107 F9 7108	San Luis Obispo Contra Costa San Mateo Mendocino Mendocino	Coast Guard Naval Mag. Park Ranger W. Despain R. Near	35 38 37 39 39	40 01 14 22 18	42	121 122 122 123 123	17 01 12 08 04	42	59 50 422 1060 1100	26S 2N 8S 17N 17N	6E 1 1W 3W 11W 11W 2	8 Q 6	11P 8A 8A 0			1938 1946 1959 1953 1952	900 900 901 900 900
Potter Valley P. H. Priest Valley Quien Sabe-Hay Camp Rancho Quien Sabe Redwood City	F9 7109 02 7150 01 7190 D1 7249 E7 7339	Mendocino Monterey Sao Benito San Benito San Mateo	P. C. & E. N. Palmer J. F. Serta R. Somavia Fire Dept.	39 36 36 36 37	22 11 51 50 29	30 12	123 120 121 121 121 122	08 42 11 12 14	48 48	1014 2300 1630 1800 31	17N 0S 12S 13S 5S	11W 12E 2 7E 2 7E 3W	6 1 7 M 4 D	31 SS 7/ (51	SS 7A		1911 1898 1949 1931 1899	900 900 000 000 900
Richmond Roosevelt Ranch Søint Nelena Søint Helena 4 WSW Saint Nary's College	E4 7414 D4 7539-01 E3 7643 E3 7646 E4 7661	Contra Costa Monterey Napa Napa Contra Costa	Richmond N. Roosevelt E. Paulson E. Learned Fr. Senedict	37 36 38 38 38 37	56 10 30 30 50	48	122 121 122 122 122	21 41 28 32 06	48	55 1100 255 1792 625	1N 2 OS 8N 7N 1S	4W 2E 2 5W 3 6W 2W 1	1 N 4	8/ 8/ 61 (51	8A 6P		1950 1946 1907 1939 1942	900 000 900 900 900

TABLE A-I CLIMATOLOGICAL STATION INDEX

STATION NAME	STA NUMBER	COUNTY	OBSERVER	LA	T I T L		LON		30L	ELEV IN FEET	TOWNSHIP	RANGE	40 ACRE	OB P	TIM OF SERV T	-	RECORD BEGAN	
Salinas 2 E Selinas FAA Airport Salinae Dam Sau Anselmu Sau Anselmu Sau Anselmu	02 7668 D2 7669 D3 7672 E2 7707-01 03 7714	Monterey Monterey San Luis Obispo Marin Monterey	Fire Dept. Fed. Av. Agency Dam Operator Morin Co. Eugr. San Antonio Man.	36 36 35 37 36	40 40 20 58 01	36	121 121 120 122 121	37 36 30 33 15	42	80 80 1386 100 1060	145 145 305 2N 225	3E 3E 14E 6W 7E	8	5			1958 1873 1942 1957 1959	900 900 900 411 900
Ssa Ardo Ssa Beaito Sen Clemente Dam Ssa Pelipe Highway Station San Francisco Richmond Sunset	D2 7716 01 7719 D4 7731 01 7755 E8 7767	Monterey San Senito Monterey Santa Clara San Francisco	W. Rosenberg J. Shields Wtr. & Tel. Co. Div. of Highways Sau Francisco	36 36 36 37 37	00 30 26 01 46	48 30 12	120 121 121 121 121 122	54 04 42 20 30	06 54 30	440 1355 600 365 300	22S 16S 17S 10S 2S	10E 8E 2E 6E 6W	27 E	7.			1894 1936 1940 1943 1948	900 900 900 900 900
Sau Francisco WBAP Sau Francisco Fed. Office Bldg. Sau Gregorio 3 SE Sau Jose Sau Jose Decid. F.F.S.	E7 7769 E7 7772 E8 7807 E6 7821 E6 7824	Sau Mateo Sau Francisco Sau Mateo Saota Clera Santa Clara	USWB USWB Pomponio Ranch E. 8illwiller A. Amstutz	37 37 37 37 37 37	37 47 18 21 19		122 122 122 121 121	23 25 20 54 57		8 52 355 70 90	3S 2S 7S 7S 7S	5W 6W 4W 1E 1W	30 15 j	5	0		1928 1931 1954 1874 1935	900 900 900 900 801
Sau Juan Bautists Missiou San Lucas Guidici San Mateo San Rafael San Rafael Nat. Bank	D1 7835 D2 7845-10 E7 7864 E2 7880 E2 7880-08	San Benito Monterey San Mateo Mario Marin	8. A. Farber DWR - L&WU Fire Dept. City Engr. Crocker Cit. Sank	36 36 37 37 37 37	50 07 34 58 58	42 25 24	121 121 122 122 122	32 01 19 32 31	00 09 30	200 380 30 31 25	12S 21S 4S 2N 2N	4E 9E 4W 6W 6W	8 8 29	8, V 5, 5, 8,	ar ? 58 ? 58		1900 1962 1874 1948 1876	804 806 900 900 413
Senta Clara University Santa Cruz Senta Rite Muther Santa Ross Sewage Plent Santa Rosa	E6 7912 D0 7916 D2 7959-10 F9 7964 F9 7965	Santa Clara Santa Cruz Monterey Sonoma Sonoma	Santa Clara Univ. R. Burtoo DWR - LGWU M. McKinnie C. Newberry	37 36 36 38 38	21 59 45 26 27	00 24	121 122 121 122 122	56 01 41 45 42	24 12	88 125 80 20 167	75 115 145 7N 7N	1W 1W 3E 8W 8W		5 5 V 8, 7,	2 5E	Ver 8A	1881 1866 1962 1956 1888	900 900 806 000 900
Santa Rosa Pedranzini Saratoga-Clarke Saratoga-Kriege Sesraville Lake Sebastopol 4 SSE	F9 7965-03 E6 7998-01 E6 7998-03 E6 8068 F9 8072	Sonoma Sauta Clara Sauta Clara Sau Mateo Sonoma	DWR - L&WU J. Clarke D. Kriege A. Clapp G. Nahmens	38 37 37 37 37 38	21 16 15 24 21	38 48	122 121 122 122 122	44 59 02 14 49	31 42	90 272 240 350 150	6N 7S 8S 6S 6N	8W 1W 2W 3W 9W	31 1	7. 7. 7. 8.	4	Var	1962 1956 1960 1949 1935	806 414 414 900 900
Skaggs Spg. Les Lomas Raoch Slack Canyon Soledad CTP Soledad Sonoma	F9 8272 D2 8276 D2 8338-01 D2 8338 E2 8351	Sonoma Monterey Monterey Monterey Sonoma	J. Leithold Div. of Forestry P. F. Bootadelli J. Francioni L. Dickey	38 36 36 36 38	41 05 28 26 17	26	123 120 121 121 122	08 40 22 19 27	34	1930 1730 230 204 20	10N 21S 17S 17S 5N	12W 12E 5E 6E 5W	36 22 12 5 7	8, 9, 8, 5;	C 9A	9A	1939 1955 1961 1874 1952	900 900 000 900 900
Spreckels Nwy. Bridge Spreckels Spreckels Nill-Løguna Seca Stevens Creek Reservoir Suey Ranch	D2 8446 D2 8446-01 E6 8447 E6 8519 D6 8627	Monterey Monterey Santa Clara Santa Clare San Luis Obispo	8. Hennes Spreckels Sugar SCVWCO SCVWCD Suey Rauch	36 36 37 37 34	36 37 12 18 59	40	121 121 121 122 120	41 39 44 05 22	35	60 48 384 600 390	15S 15S 9S 7S 9N	3E 3E 3E 2W 33W	28 E	8, 8, 8, 8, 5;	. 8A		1905 1905 D 1937 1909	900 000 414 414 900
Sunset Beach State Perk Talmage Tamalpais Valley Templeton The Geysers	01 8680 P9 8776-01 E2 8779 D3 8849 F9 8885	Senta Cruz Mendaciao Marin San Luis Obispo Sonoma	Bch. & Parks L.G. Von Schriltz Glessner A. Willhoit P. Dewey	36 39 37 35 38	54 08 52 32 48	42 56	121 123 122 120 122	50 11 32 42 49	36 21	85 413 250 773 1600	115 15N 1N 275 11N	1E 12W 1 6W 12E 2 9W 2	29	8, 8, 8,	8,8		1956 1953 1959 1886 1939	900 000 901 000 900
Tiburon-Topham Travis Air Force Saee Ukiah Ukiah 4 WSW Upper Norro Creek	E2 8920-21 E3 9006 F9 9122 P9 9124 D6 9179	Marin Solano Mendocino Mendocino Sen Luís Obispo	H. Topham U.S.A.F. Pire Dept. M. Dory E. Purser	37 38 39 39 39	52 16 05 08 27	24	122 121 123 123 120	27 56 12 17 45	12	400 50 623 1900 1050	15 5N 15N 15N 285	SW 1W 2 12W 1 13W 2 11E 3	L7 27	9/ 8/ 51 8/ 7/	5P		1960 1943 1877 1951 1951	000 902 900 900 000
Upper Sao Leandro Filters Upper Tres Pinos Valleton Vasona Reservoir Venado	E4 9185 01 9189 D3 9221 E6 9270 F9 9273	Contra Costa San Benito Monterey Santa Clara Sonoma	East Say MUD E. Francher A. Curtis SCVWCD J. Harper	37 36 35 37 38	46 38 53 14 37	36	122 121 120 121 123	10 02 42 58 01	00	390 2050 950 300 1260	2 S 155 235 85 9N	3W 1 9E 12E 2 1W 1 10W 1	7 32 15	7/			1944 1940 1940 1962 1939	900 900 900 414 900
Veterans Home Walmar School Walnut Greek 2 ESE Walnut Creek 2 ENE Walnut Creek 4 E	E3 9305 E4 9420 E4 9423 E4 9423 E4 9426 E4 9427	Nape Contra Costa Contra Costa Contra Costa Contra Costa	B. Barboze M. Dennis R. Whittemore T. Vanasek E. Irving	38 37 37 37 37	23 57 53 54 54		122 122 122 122 122 121	22 05 02 01 59		170 128 245 220 400	6N IN IN IN IN	5W 2W 2W 2W 1W		8, 51 8/ 9/	8A		1912 1954 1887 1944 1954	000 900 900 900 900
Watsonville Water Works Wilder Ranch Wild Borse Valley Woodarre Wrighte	D1 9473 D0 9675 E3 9675-41 P9 9770 E6 9814	Santa Cruz Santa Cruz Sulano Mariu Seuta Clera	L. Bechis D. R. Wilder G. Stiltz Div. of Forestry M. Were	36 36 38 38 38 37	56 57 17 00 08	36 53 24	121 122 122 122 122	46 05 11 38 57	24 13 30	95 50 1240 430 1600	115 115 5N 2N 95	2E 3 2W 2 3W 1 7W 1W 2	22 LO D	8) 51 8/ 21 51	21		1880 1924 D 1950 1918	900 000 418 808 900
Yorkville Yountville Gømble	F8 9851 E3 9861	Mendocino Napa	L. Hulbert DWR - L&WU	38 38	55 26	05	123 122	16 22	05	1100 120	12N 7N	13W 5W 2	2 24 P	Ve		Ver	1939 1962	900 806

	INTERI	M M	ONT	HLY	PRECIPI	TATION 1963			
STATION NUMBER	STATION NAME	JULY	AUG.	SEPT.	STATION NUMBER	STATION NAME	JULY	AUG.	SEP,
E6 0053 E4 0064 E6 0125 F9 0135 E3 0212	Alamitos Perc. Fond Alamo 1 N Almaden Reaervoir Alpine Dam Angwin Pacific Union College	0 0 0 0	T T 0 0 0	.16 .27 .17E .07 T	E2 4500 F9 4502 D2 4555 E4 4633 F9 4652	Kentfield Kent Loke King Clty Lafayette 2 NNE Lagunitas Loke	0 0 0 0	Т 0 0 0	.13 .08 .23 .37 M
02 0322 D3 0360-01 E3 0372 D0 0674 E4 0693	Arroyo Seco Atascadero HMS Atlas Road Ben Lomond Berkeley	0 0 0 0	0 .02 0 .06	.20 .19 .17 .24 .10	E8 4660 E3 4677 E6 4916 E6 4922 D3 4963	La Nonda Lake Curry Leroy Anderson Dam Lexington Reservoir Linn Ranch	0 0 0 0	.03 0 0 T 0	.40 .38 .14 .35 .20
E6 0706 D4 0790 E6 0850 F9 0876 F9 0969	Berryeasa 1 E (Toyon Ave.) Big Sur State Park Black Mountain 2 SW Blakes Landing Bon Tempe Dam	0 0 0 0	0 T •01 0 0	.10 .03 .18 0 0	E5 4996 E5 4997 D3 5017 E6 5123 E6 5123-04	Livermore Sewage Plant Livermore 2 SSW Lockwood 2 N Los Gatos Los Gatos-Old Orchard Road	0 0 0 0	.05 T 0 .01	.36 .33 .23 .46 .21
F8 0973 F8 0973-02 D4 0998-27 D3 1034 D1 1170	Boonville HMS BoonVille Farrer Bouchers Gap Bradley Buena Vista	0 0 0 0	0 0 0 0	.01 T .07 .09 .29E	DO 5125 D4 5184 E3 5333 E4 5371 E4 5372	Los Gatos 4 SW Lucia Willow Springs Marte Island Martinez 3 S Martinez 3 SSE	000000000000000000000000000000000000000	0 0 05 0 0	.17 .08 .38 .25 .52
E7 1206 E4 1216 D1 1247 E5 1281 E6 1285	Burlingame Burton Ranch Buzzard Lagoon Calaveras Reservoir Calero Reservoir	0 0 0 0	0 .01 0 0	.15 .26 .32 .06 .15	E4 5377 E2 5647 D4 5795 E6 5844 E6 5846	Martinez Fire Station Mill Valley Monterey Morgan Hill 2 E Morgan Hill 6 WNW	0 0 M 0 0	T M T O	.25 .06 M .17 .22
E3 1312 E6 1341-10 E6 1377-01 D4 1534 F9 1602	Calistoga Cambrian Park Campbell Water Co. Carmel Valley Cazadero	0 0 0 0	0 .01 0 .02 0	T .21 .34 .17 .10	D1 5853 D6 5869 E4 5915 E5 5933 D1 5973	Morgan Nill SCS Morro Bay 3 N Mt. Diablo North Gate Mt. Hamilton Mt. Madonna	0 0 0 0	0 T 0 .15 0	.13 .14 .20 .08 .13
D1 1739 D1 1739-01 D1 1766 F9 1838 F9 1840	Chittenden Pass Chittenden Ciennga Cloverdale 3 SSE Cloverdale 11 W	0 0 0 0	.03 T 0 0 0	.42 .33 .25 .15 0	D1 5973-11 E2 5996 E2 6027 E3 6065 E3 6068	Mt. Madonna County Park Mt. Tamalpais 2 SW Muir Woods Naps Naps-Haven	.02 0 .01 0 0	.09 0 .01 0 T	.29 .27 .26 .15 .15
E4 1962 E3 1976 F9 2105 E6 2109 D0 2159	Concord 3 E Conn Coyote Dam - Lake Mendocino Coyote Reservoir Crest Ranch	0 0 0 0	.02 0 T .03 0	.26 0 .19 .28	E3 6074 F9 6105 E5 6144 F9 6187 E2 6290	Napa State Nospital Navarro 1 NW Newark Nicasio Novato 8 WNW	0 0 0 0	T 0 .01 0 0	.29 0 .09 0 .05
E4 2177 D0 2290 D2 2362 E3 2580 E6 2919	Crockett Davenport Del Monte Duttons Landing Evergreen - Silver Creek Rd.	0 .01 0 0	.02 .07 0 T T	.10 .26 .41 .32 .13	E2 6290-02 E4 6335 E3 6351 E3 6354 E3 6356	Novato Fire Nouse Oskland WBAP Oskville I WNW Oskville 4 SW Oskville 4 SW No. 2	0 0 M 0 NR	0 .01 M 0 NR	0 ,28 M RE NR
E3 2933 E3 2934 F8 3161 F8 3164 F8 3164 F8 3191	Fairfield Fairfield Police Station Fort Bragg Fort Bragg Aviation Fort Ross	0 0 .01 0 T	0 T .07 .05 T	.33 .40 .19 .03 .15	F9 6370 D1 6610 E7 6646 D2 6650 D3 6703	Occidental Paicines Ohrwall Ranch Palo Alto City Hall Paloma Parkfield	0 0 0 0	0 0 .05 .03 T	.16 .24 .17 .25 .32
01 3232 D1 3238 E5 3387 D1 3417 D1 3419	Freedom 8 NNW Fremont Peak State Park Gerber Ranch Gilroy Gilroy 8 NE	000000000000000000000000000000000000000	.02 0 .01 T 0	.28 .60 .24 .36 .27	D3 6706 E6 6791-43 E2 6826 E2 6826-01 E2 6829	Parkfield 7 NNW Peniteacia Rain Gage Petaluma Fire Station No. 2 Petaluma - Burne Petaluma 1 N	0 0 0 0	0 0 0 0	.20 .16 .05 0 .09
D1 3422 D2 3502 F9 3577 F9 3578 E3 3612-01	Gilroy 14 ENE Gonzales 9 ENE Graton Graton 1 W Green Valley	0 0 0 0	0 0 0 0	.25 .17 .04 .03 .36	F9 6853 D4 6856 D2 6926 E5 6991-05 F8 7009	Phoenix Lake Dam Pico Blanco B.S. Camp Pinnacles National Monument Pleasanton Nursery Point Arena	0 RE 0 0	O T O	.08 .13 .20 .15
E6 3681 F9 3683 E8 3714 D3 3722 E4 3863	Guadalupe Reservoir Guerneville Nalf Moon Bay 2 NNW Hames Valley Hayward 6 ESE	0 0 M 0	0 T .03 M 0	.18 T .09 M .07	05 7024 E4 7070 E8 7086 F9 7107 F9 7108	Point Piedras Blancas Port Chicago NAD Portola State Park Potter Valley 3 NNW Potter Valley 3 SE	0 0 0 0	0 T 0 0	.18 .16 .38 .20 .20
F9 3875 F9 3878 D1 3928 D1 4022 D1 4022-10	Healdsburg Healdsburg 2 E Nernandez 7 SE Hollister Nollister Costa	0 0 0 0 T	Ť .02 .10 T .02	.01 .01 .91 .21 .13	F9 7109 D2 7150 D1 7190 D1 7249 E7 7339	Potter Valley PN Priest Valley Quien Sabe Hay Camp Rancho Quien Sabe Redwood City	0 0 0 0	O T T O T	.27 .25 .24 .12 .29
D1 4025 D1 4035 F9 4100 F9 4277 F9 4480	Hollister No. 2 Hollister 10 ENE Nopland Largo Station InvernessMery Kellogg	0 0 0 0	0 0 T 0 .02	.30 .27 .15 0 .09	E4 7414 D4 7539-01 E3 7643 E3 7646 E4 7661	Richmond Roosevelt Ranch St. Helens St. Helena 4 WSW St. Mary's College	0 0 0 0	.03 .03 .02 0 T	.13 .D4 .01 0 .30

TABLE A-2

	INTERI	MM	IONT		PRECIPIT	ATION 1963			
STATION NUMBER	STATION NAME	JULY	AUG.	SEPT.	STATION NUMBER	STATION RAME	JULY	AUG.	SEP.
D2 7668 02 7669 D3 7672 E2 7707-01 D3 7714	Salinas 2 E Salinas FAA Airport Salinas Dam Saa Anselmo San Antonio Mission	0 T 0 0	.02 T .20 0	.36 .34 .38 .02 .09					
D2 7716 D1 7719 D4 7731 D1 7755 E8 7767	Sao Ardo San Benito San Clemente Dam San Felipe Highway Station San Fraocisco Richmond Sunset	0 0 0 0	0 0 0 0 0	.07 .05 .09 .22E .36					
E7 7769 E7 7772 E8 7807 E6 7821 E6 7824	San Francisco WBAP San Francisco Fed. Off. Bldg. San Gregorio 3 SE San Jose Sao Jose Decid FFS	0 0 .02 0 0	0 0 •04 T 0	.07 .06 .35 .25 .29					
D1 7835 D2 7845-10 E7 7864 E2 7880 E2 7880-08	San Juan Bautista Mission San Lucas Guidici San Mateo San Rafael San Rafael National Bank	0 0 0 0	O O T O T	.20 .12 .17 0 .03					
E6 7912 D0 7916 D2 7959-10 F9 7964 F9 7965	Sauta Clara University Santa Cruz Sauta Rita Muther Santa Rosa Sewage Plant Sauta Rosa	0 .02 .01 0 0	T .06 .03 T .01	.25 .16 .41 .07 .09					
F9 7965-03 E6 7998-01 E6 7998-03 E6 8068 F9 8072	Santa Rosa Pedranzini Saratoga - Clarke Saratoga - Kriege Searsville Lake Sebastopol 4 SSE	T 0 0 0	T .01 .01 T 0	0 .22 .24 .35 .09					
F9 8272 D2 8276 D2 8338 D2 8338-01 E2 8351	Skaggs Spgs. Las Lomas Ranch Slack Canyon Soledad Soledad CTF Sonoma	0 0 0 0	0 0 T 0 T	.04 .17 .29 0 .03					
D2 8446 D2 8446-01 E6 8447 E6 8519 D6 8627	Spreckels Highway Bridge Spreckels Spreckels Hill-Laguna Seca Stevens Creek Reservoir Suey Ranch	0 0 0 0	T 0 0 0	.29 .36 .15 .36 .40					
01 8680 F9 8776-01 E2 8779 D3 8849 F9 8885	Sunset Beach State Park Talmage Tamalpaıs Valley Templeton The Geysers	0 0 0 0	0003003	.27 .03 .18 .19 .05					
E2 8920-21 E3 9006 F9 9122 F9 9124 D6 9179	Tiburon - Topham Travis Air Force Base Ukiah Ukiah 4 WSW Upper Morro Creek	0 0 0 .01 0	0 0 .01 .02	.10 .23 T .09 .23					
E4 9185 D1 9189 D3 9221 E6 9270 F9 9273	Upper Sac Leandro Pilters Upper Tres Pinos Valleton Vasona Reservoir Venado	0 0 0 0 0 0 0 0	.05 0 0 T 0	.23 .20 .23E .32 .09					
E3 9305 E4 9420 E4 9423 E4 9426 E4 9427	Veteran's Home Walmar School Walnut Creek 2 ESE Walnut Creek 2 ENE Walnut Creek 4 E	0 0 0 0	0 0 0 0	.05 .05 .23 .21 .20					
01 9473 00 9675 E3 9675-41 F9 9770 E6 9814	Watsonville Water Works Wilder Ranch Wild Horse Valley Woodscre Wrights	0 0 0 0	.04 0 T 0 0	.30 .25 .38 .03 .18					
F8 9851 E3 9861	Yorkville Yountville Gamble	0 T	0	0 .01					

TABLE A-2

	SEASO	DNAL				ATIC	N I	963	-64					
NUMBER	STATION NAME	TOTAL	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	мау	JUN.	JUL.	AUG.	SEP.
E6 0053 E4 0064 E6 0125 F9 0135 E3 0212	Alamitos Perc. Pond Alamo l N Almaden Reservoir Alpine Dam Angwin Pac. Union College	11.98 15.54 21.14 33.66 25.71	1.31 1.41 1.88 2.60 2.87	4.57 7.13 12.70	.17 .46 .22 2.53 .81	4.57 5.38 7.50 8.25 7.09	.29 .01 .37 .20 .22	2.15 2.24 4.42	24 48 38 45 09	.26 .55 .74 .76 .55	.21 .50 .57 1.75 .89	U T 0 0 0	.12 .03 .11 0 0	.0: 0 0 0
D2 0322 D3 0360-01 E3 0372 D0 0674 E4 0693	Arroyo Seco Atascadero HMS Atlas Road Ben Lomond Berkeley	12.95 11.12 18.13 36.03 14.06	1.05 .95 3.32 3.67 1.61	3.47 E7.95 14.68	.12 .13 E.96 .46 .60	3.48 2.70 0 8.69 4.96	.16 .11 0 .53 .16	2.27 1.45 3.20 4.91 2.21	.08 1.51 0 .23 .05	.69 .61 .80 1.46 .32	.80	0 0 1.10 0 T	.15 0 .15 .01	0 0 0 0
E6 0706 D4 0790 E6 0850 F9 0876 F9 0969	Berryessa l E (Toyon Ave.) Big Sur State Park Black Mountain 2 SW Blakes Landing Bon Tempe Dam	M 29.40 23.45 M 25.60	2.55 3.38 2.24 3.41 2.64	10.22 7.58	.32 .41 .58 1.05 1.48	4.40 5.57 6.21 4.09 5.83	.40 .40 .31 .24 .35	4.63 3.02 2.17	.30 .72 .48 .23 .60	.82 2.69 1.59 .15 .82	.80 1.02 1.31 1.40 1.15	M 04 .04 M 0	M 0 09 M 0	M .36 T M 0
F8 0973 F8 0973-02 D4 0998-27 D3 1034 D1 1170	Boonville HMS Boonville-Farrer Bouchers Gap Bradley Buena Vista	M M 6.88 11.07	1.03	10,87	1.30 1.66 .99 .06 .53	M 9.02 8.72 1.78 2.38	.34 .35 .65 .13 .31	3.34 4.26 5.52 .64 2.74	.40 .38 1.54 .72 0	1.38 1.81 2.86 .11 .54	.44 .47 RE 0 .49	Т М О О	.02 .1 0 .24	0 M 0
E7 1206 E4 1216 D1 1247 E5 1281 E6 1285	Burlingame Burton Rauch Buzzard Lagoon Calaveras Reservoir Calero Reservoir	13.43 15.74 M 13.37 14.87	1.27 1.70 3.60 2.09 1.26	3.53 4.71 8.09 E3.04 5.27	.48 .55 .31 .36 .22	4.92 5.20 7.90 3.82 4.88	.24 .18 .20 .24 .26	1.97 1.62 4.61 1.95 1.74	.13 .61 .03 .37 .28	.42 .76 .61 .70 .32	.45 .40 .77 .71 .54	0 T M 0 0	.02 .01 M .04 .10	0 0 M .05 0
E3 1312 E6 1341-10 E6 1377-01 D4 1534 F9 1602	Calistoga Cambrian Park Campbell Water Co. Carmel Valley Cazadero	21.97 12.14 10.90 13.78 44.02	2.34 1.31 .91 1.30 6.86	8.89 3.76 3.80 3.25 18.50	.60 .14 .04 .35 .46	5.49 4.56 3.61 3.47 12.04	.24 .30 .30 .20 .72	2.69 .97 1.27 2.74 3.07	.16 .35 .36 .46 .22	.68 .39 .28 1.36 1.62	.88 .19 .17 .40 .51	T 0 T 0 .02	0 .15 .16 .25 T	T .02 0 T 0
D1 1739 D1 1739-01 D1 1766 F9 1838 F9 1840	Chittendeo Pass Chittendeo Cienaga Cloverdale 3 SSE Cloverdale 11 W	M 13.50 M 30.65 43.22	1.71 1.62 1.56 4.71 6.71	4.46 4.33 2.74 11.52 16.75	.19 .22 .34 1.68 1.94	4.32 4.12 4.21 6.06 10.67	.18 .18 .32 .51 .44	2.36 2.54 3.20 3.24 4.25	.20 .08 .12 .66 .29	.42 .25 .44 1.17 1.45	M 0 .34 1.05 .72	M 0 .05 0	.05 .16 M 0 0	M 0 M 0 0
E4 1962 E3 1976 F9 2105 E6 2109 D0 2159	Concord 3 E Conn Coyote Dam-Lake Mendocino Coyote Reservoir Crest Ranch	11.58 M 24.06 15.20 M	1.32 M 4.10 2.46 4.00	3.59 M 7.05 4.90 14.85	.47 M 1.64 .15 .60	3.88 M 5.91 4.43 9.75	.06 M .23 .16 .35	1.12 M 2.95 1.97 4.66	.49 M .76 .18 .99	.22 M .90 .48 2.13	.40 M .34 .34 .10	0 M .16 T M	.03 M 0 .06 M	0 M 0 .07 M
E4 2177 D0 2290 D2 2362 E3 2580 E6 2919	Crockett Davenport Del Monte Duttons Landing Evergreen-Silver Ck. Road	13.47 17.02 9.33 13.67 10.58	1.99 1.85 .91 2.19 1.49	3.98 6.36 2.50 3.91 2.46	.47 .27 .31 .59 .08	3.77 4.05 2.09 3.38 3.76	.12 .16 .32 .58 .24	1.24 2.29 2.21 2.02 1.48	.28 .48 .06 .12 .38	.29 .64 .46 .14 .26	1.31 .77 .17 .70 .35	0 .02 .04 T 0	02 09 26 04 08	0 .04 0 0 0
E3 2933 E3 2934 F8 3161 F8 3164 F8 3191	Fairfield Fairfield Police Station Fort Bragg Fort Bragg Aviation Fort Ross	13.53 11.97 31.53 29.73 26.11	1.68 1.96 4.98 5.05 4.38	3.99 3.38 9.48 9.77 10.69	.36 .60 1.87 1.87 1.22	4.00 1.06 7.58 8.01 5.59	.06 .28 .79 .51 .33	1.86 1.91 3.99 2.93 2.39	.13 .04 .64 .18 .10	.23 1.03 1.29 .87 .70	.88 1.48 .60 .41 .68	.04 0 .18 .13 .03	.30 .23 .07 0 T	0 0 06 0
D1 3232 D1 3238 E5 3387 D1 3417 D1 3419	Freedom 8 NNW Fremont Peak State Park Gerber Ranch Gilroy 8 NE	M 15.77 11.52 14.64 14.01	3.46 1.96 .85 1.37 1.86	9.33 3.38 3.68 5.54 4.81	.32 .60 .25 .23 .16	M 4.06 4.36 4.04 4.18	.25 .28 .12 .12 .11	3.67 2.71 1.18 1.75 2.00	.04 .04 .25 .38 0	.89 1.03 .24 .58 .43	.97 1.48 .36 .49 .31	0 0 0 0	.14 .23 .08 .05 .15	0 0 15 09 0
D1 3422 D2 3502 F9 3577 F9 3578 E3 3612-01	Gilroy 14 ENE Conzales 9 ENE Graton Graton 1 W Green Valley	12.65 M 23.81 25.18 20.93	1.17 1.32 2.09 2.20 1.94	4.57 2.12 9.76 10.48 7.31	.11 .53 1.21 1.28 .94	3.85 2.57 5.84 5.88 5.61	.07 .22 .45 .43 .29	1.56 M 2.43 2.95 2.70	.41 M .44 .30 .11	.34 M .45 .47 .49	.32 1.04 .94 .97 1.36	0 0 .17 .20 .07	T .31 .03 .02 .11	.19 0 0 0 0
E6 3681 F9 3683 E8 3714 D3 3722 E4 3863	Guadaluge Reservoir Goerneville Half Moon Bay 2 NNW Hames Valley Hayward 6 ESE	18.96 31.34 17.10 M 18.43	1,92 2,56 2,48 M 2,10	6.63 12.90 4.00 M 5.38	.18 1.61 1.04 M .45	6.38 8.85 5.32 2.07 5.33	.32 .64 .52 .11 .19	1.61 3.00 2.46 1.48 3.12	.48 .51 .23 .63 .06	.88 .63 .47 .34 1.01	.40 .60 .58 0 .64	0 .04 0 .04	.15 T .05 .11	.01 0 T 0 0
F9 3875 F9 3878 D1 3928 D1 4022 D1 4022-10	Healdsburg Healdsburg 2 E Hernandez 7 SE Hollister Hollister Costa	26,50 24,95 12,25 8,29 9,53		12.09 11.07 4.67 1.89 1.24	1.26 1.26 .20 .18 1.79	5.74 5.43 2.94 2.38 2.28	.22 .23 .03 .31 .07	2.68 2.23 2.25 1.56 1.56	.26 .57 .22 .03 .36	.62 .67 .51 .29 .47	.46 .47 .19 .211 .10	.03 .06 0 0	0 .13 .17 .15	H 0 0 0

TABLE A-3

			Т	ABL	E A-	3								
	SEASO	NAL				TIC	N IS	963	-64					
NUMBER	STATION NAME	TOTAL	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUN.	JUL.	AUG.	SEP.
D1 4025 D1 4035 F9 4100 F9 4277 F9 4480	Hollister No. 2 Hollister 10 ENE Hopland Largo Station Invernesservery Kellogg	8.05 M 26.40 33.84	3.74	1.93 E3.96 7.58 10.70 13.00	.13 .49 1.66 1.65 1.16	2.14 3.72 6.80 6.70 8.53	.28 .29 .30 .40 .32	1.42 2.94 2.53 2.95 3.47	0 •48 •55 0 •47	.32 M 1.12 .35 1.73	.21 1.05 .48 1.10 1.16	0 0 M 0 .05	.21 .22 0 0 T	0 0 0 .09
E2 4500 D2 4555 E4 4633 F9 4652 E8 4660	Kentfield King City Lafayette 2 NNE Lagunitas Lake La Honda	29.33 M 16.66 33.37 23.41	3.28 .76 1.65 3.26 2.46	9.49 1.73 4.76 11.89 6.36	1.49 .06 .55 1.71 .65	7.42 1.40 5.33 8.11 7.12	.27 0 .16 .45 .40	4.26 M 1.89 4.48 3.32	.54 .01 .95 .89 .26	.67 .28 .68 1.09 1.58	1.88 0 .67 1.49 .86	T 0 0 .30	.03 .13 .02 0 .10	0 0 0 0
E3 4677 E6 4916 E6 4922 D3 4963 E5 4996	Lake Curry Leroy Anderson Dam Lexington Reservoir Linn Ranch Livermore Sewage Plant	M 13.59 23.85 9.12 10.39	2.79 1.62 2.78 1.08 .91	6.24 4.63 8.42 2.93 3.38	.74 .14 .37 0 .17	4.57 4.19 6.93 2.24 2.78	.16 .21 .23 .20 .10	2.55 1.67 2.82 1.51 1.83	.14 .43 .41 .86 .05	.29 .19 .87 .25 .50	.89 .35 .79 .01 .46	.03 0 0 0 0	M .16 .22 .04 .21	M 0 •01 0 0
ES 4997 D3 5017 E6 5123 E6 5123-04 D0 5125	Livermore 2 SSW Lockwood 2 N Los Gatos-Old Orchard Rd. Los Gatos-Old Orchard Rd.	9.49 9.23 16.91 13.06 27.98	.93 .89 2.00 1.51 3.72	2,96	.19 0 .13 .16 .92	2.37 1.98 5.68 4.72 6.91	.08 .17 .20 .22 .33	1.57 1.59 1.31 1.08 3.55	.21 .95 .23 .32 .30	.48 .49 .41 .27 .12	.32 0 .15 .16 1.15	T 0 0 0 0	.12 .20 .18 .10 .23	•04 0 0 0
D4 5184 E3 5333 E4 5371 E4 5372 E4 5377	Lucia Willow Springs Mare Island Martinez 3 S Martinez 3 SSE Martinez Fire Station	18.78 M 14.97 M 13.29	2,18 1.76 1.69 1.61 1,48	7.14 3.97 4.09 3.80 3.48	.20 .51 .55 .60 .43	3.71	.12 .23 .13 .10 .14	3.54 1.46 1.86 1.71 1.56	.28 .11 .50 M .71	.79 .42 .27 .33 .42	.60 .82 1.23 1.07 1.10	0 0 0 0 T	.11 .04 0 .02 T	0 M 0 0 0
E2 5647 D4 5795 E6 5844 E6 5846 D1 5853	Mill Valley Monterey Morgan Hill 2 E Morgan Hill 6 WNW Morgan Hill SCS	M 13.66 M 17.92 14.05	2.12 1.46 1.40 1.14 1.30	4.82 7.14	1.23 .53 .20 .21 .14	4.43 3.50 4.28 5.70 4.40	.17 .42 .24 .35 .25	2.16 2.23 1.62 2.29 1.92	.53 .22 .41 .07 .03	.49 .86 .19 .35 .14	1.26 .22 M .57 .42	.09 0 0 0	M .35 .14 .10 .20	M .01 M 0 0
D6 5869 E4 5915 E5 5933 D1 5973 D1 5973-11	Morro Bay 3 N Mt. Diablo North Gate Mt. Hamilton Mount Madonna Mt. Madonna Co. Park	10.92 16.20 15.10 25.37 24.49	1.58 1.80 1.47 3.00 2.80	3.18	T .48 .81 .38 .51	1.70 5.17 3.61 8.16 7.40	.13 0 .32 .25 .33	2.65 1.85 2.97 3.86 3.01	.12 .29 .66 .11 .38	.65 .59 1.30 .94 1.13	.05 .91 .66 .73 .86	0 .02 T 0 .06	.10 .14 .12 .21 .23	0 0 0 .21
E2 5996 E2 6027 E3 6065 E3 6068 E3 6074	Mt. Tamalpsis 2 SW Muir Woods Napa Napa Haven Napa State Hospital	25.37 23.48 M NR 16.07	2.56 2.93 2.65 2.65 2.83	7.69 5.43 4.83	1.95 2.02 .73 .76 .73	6.85 5.87 3.52 3.66 3.46	.23 .13 .15 .12 .19	3.14 2.21 1.72 1.96 2.09	* .35 .12 .18 .10	V.61 .59 .16 .17 .15	1.67 1.66 .60 .74 .65	0	.05 .03 M RE .06	0 0 0
F9 6105 E5 6144 F9 6187 E2 6290 E2 6290-02	Navarro 1 NW Newark Nicasio Novato 8 WNW Novato Fire House	27.72 10.25 26.73 M M	3.87 1.21 2.38 E2.11 2.01	9.92	1.50 .24 1.17 1.17 .90	7.50 3.54 8.55 4.86 4.09	.60 0 .22 .16 .15	3.65 1.31 3.02 M 2.01	.12 .07 .06 M .44	1,28 .45 .25 M .31	.41 1.16 1.20	0 0 0 M	0 ,09 0 0 M	0 0 0 0 M
E4 6335 E3 6351 E3 6356 F9 6370 D1 6610	Oskland WBAP Oskville 1 WNW Oskville 4 SW No. 2 Occidental Paicines Ohrwall Ranch	11.88 M 32.40 10.38	1.44 1.84 3.02 2.86 1.07	5.61 9.88	.42 .70 .98 1.68 .34	3.90 6.04 6.90 7.96 3.21	.23 .32 M .48 .20	1.94 M 3.05 2.38	.03 0 .11 .37 .08	.24 M .57 .89 .39	.43 .32 .80 1.04 .20	.03 M .10 .02 0	.03 M .02 .04 0	0 M 0 0
E7 6646 D2 6650 D3 6703 D3 6706 E6 6791-43	Palo Alto City Hall Paloma Parkfield Parkfield 7 NNW Penetencia Rain Gage	9.42 19.96 M M 12.15	.88 1.16 1.00 E1.20 2.01	6.30 2.87 3.72	.14 .88 T .10 .29	3.17 3.28 2.21 1.22 3.40	.21 .72 .05 .09 .33	.97 4.30 1.12 .57 1.34	0 .86 .67 .09 .32	.53 2.10 .56 .49 .44	.45 .21 M 0 .56	0 T 0 0	.12 .15 0 M 0	0 0 .28 0 0
E2 6826 E2 6826-01 E2 6829 F9 6853 D2 6926	Petaluma F.S. No. 2 Petaluma-Burns Petaluma 1 N Phoenix Lake Dam Pinnacles National Mon.	15.97 M M 31.50 11.42	1.52 1.75 E1.57 3.42 1.28	7.25 5.06 11.95	.92 1.05 .72 1.30 .26	4.63 5.30 4.21 7.35 3.01	.26 .20 .23 .30 .08	1.81 2.20 1.88 4.25 3.06	.08 .20 .12 .60 .43	.21 .25 .25 .85 .73	.84 1.30 M 1.40 .40	M	T M 0 •26	0 M 80.
E5 6991-05 F8 7009 D5 7024 E4 7070 E8 7086	Pleasanton Nursery Point Arens Point Piedras Blancas Port Chicago NAD Portola State Park	13.71 29.38 M 10.03 M	1.06 5.55 .37 1.27 2.61	£10.69 4.07 2.95	.30 1.46 .16 .35 .80	4.10 5.63 2.77 3.41 7.15	.11 .48 .38 .03 .42	2.33 3.19 2.83 .98 3.65	.11 .37 .52 .18 1.00	.74 1.14 M .14 1.84	.27 .79 .12 .70 .91	0 .08 0 0 M	.06 0 .11 .02 M	0 0 0 M
F9 7107 F9 7108 F9 7109 D2 7150 D1 7190	Potter Valley 3 NNW Potter Valley 3 SE Potter Valley PH Priest Valley Quien Sabe Hay Camp	M 20,29 32.22 13.07 13.14	4.89 3.85 5.63 1.53 1.39	5.71 10.10 5.11	1.77 1.45 1.96 .20 .61	8.07 5.72 8.18 2.98 3.38	.43 .33 .49 .07 .30	3.82 2.14 3.82 1.95 2.58	* .20 .52 .53 .38	v1.20 .30 1.13 .43 .92	.20 .54 .34 .09 .70	M .05 .05 T T	0 0 .13 0	M 0 .05 .29

	SEASO	NAL				TIC	N P	963	-64					
NUMBER	STATION NAME	TOTAL	OCT.	MOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUN.	JUL.	AUG.	SEP.
D1 7249 E7 7339 E4 7414 D4 7539-01 E3 7643	Rancho Quien Sabe Redwood City Richmond Roosevelt Ranch St. Helena	M 12.25 13.04 21.81 20.12	1.39 .95 1.82 3.30 1.84	2.72 3.98 3.81 7.14 8.00	.51 .26 .49 .40 .74	3.96 3.60 3.90 4.10 5.32	.14 .27 .23 .31 .15	3.41 1.67 1.40 3.58 2.69	.22 .13 .37 .41 .11	.88 .56 .22 1.65 .48	.87 .75 .79 .70	M T T T .04	M .08 .01 0 T	M 0 •22 0
E3 7646 E4 7661 D2 7668 D2 7669 D3 7672	St. Helena 4 WSW St. Mary's College Salinas 2 E Salinas FAA Airport Salinas Dam	27.98 19.32 10.61 10.26 12.66	2.47 1.94 1.46 1.53 1.21	10.27 5.43 2.42 2.39 3.62	.75 .66 .26 .34 .10	7.68 6.36 2.29 1.97 3.30	.32 .38 .10 .11 .18	3.62 2.85 2.46 2.45 1.96	.19 .35 .31 .21 1.26	.96 .88 .75 .66 .71	1.10 .39 .36 .40 .16	.02 .08 0 T T	0 T .20 .20 0	0 0 T T .16
E2 7707-01 D3 7714 D2 7716 D1 7719 D4 7731	San Anselmo San Antonio Mission San Ardo San Benito San Clemente Dam	M 9.39 6.64 M 15.87	2.89 .74 .92 1.14 1.30	9.92 3.56 2.66 1.93 4.33	.93 0 .14 .46	5.65 3.14 1.48 2.09 4.00	.15 .06 .10 .29 .46	3.16 1.50 .70 2.36 2.70	.66 0 .50 .02 .77	.65 .39 .15 .14 1.38	1.55 0 .37 .17	M T 0 0	M 0 0 M 0	M 0 .13 0 .30
D1 7755 E8 7767 E7 7769 E7 7772 E8 7807	San Felipe Highway Sta. San Fran. Richmond Sunset San Francisco WBAP San Fran. Fed. Off. Bldg. San Gregorio 3 SE	M 12.08 12.72 12.27 20.33	1.56 1.78 1.34 1.39 2.95	3.62 3.12 3.29 3.52 6.32	E.25 .86 .55 .87 .79	3.34 3.45 4.38 3.37 5.22	.08 .29 .27 .19 .42	M 1.79 1.95 2.12 2.59	.03 .02 .01 .01 .11	.50 .18 .32 .22 .92	M .52 .60 .57 .77	0 .06 0 .15	.17 .01 .01 .01 .09	0 0 T T
E6 7821 E6 7824 D1 7835 D2 7845+10 E7 7864	San Jose San Jose Decid FFS San Juan Bautista Miss. San Lucas Guidici San Mateo	10.01 11.08 11.76 5.48 13.44	1.17 1.42 1.44 .84 1.16	3.00 3.53 4.01 .68 4.72	.12 .16 .25 1.16 .41	3.20 3.57 3.38 1.20 4.18	.23 .20 .18 .06 .27	1.14 1.08 1.60 1.36 1.85	.21 .43 .07 .09 .11	.38 .34 .40 .09 .30	.56 .22 .24 0 .36	T 0 0 0	T .13 0 T .08	0 0 19 0 0
E2 7880 E2 7880-08 E6 7912 D0 7916 D2 7959-10	San Rafael San Rafael Nat, Bank Santa Clara University Santa Cruz Santa Rita Muther	23.10 20.54 10.29 19.03 9.77	2.52 2.72 1.24 1.85 1.69	7.87 7.37 2.97 6.72 1.02	.95 .77 .20 .33 1.95	4.73 3.48 3.41 5.33 2.06	.20 .13 .19 .20 .06	3.28 2.59 1.23 3.26 1.79	.56 .65 .29 .16 .22	.68 .60 .31 .44 .39	2.28 2.20 .27 .37 .34	T 0 T 0 .01	.03 T .18 .17 .24	0 .03 0 .20 T
F9 7964 F9 7965 F9 7965-03 E6 7998-01 E6 7998-03	Santa Rosa Sewage Plant Santa Rosa Santa Rosa Pedranzini Saratoga Clarke Saratoga Kriege	19.08 20.29 17.32 12.33 14.28	2.18 2.61 1.75 1.27 1.46	7.53 7.53 4.97 4.55 5.13	.89 .81 2.66 .10 .10	4.24 5.19 3.99 3.73 4.36	.32 .33 .09 .18 .21	2.24 1.97 2.09 1.34 1.67	.19 .33 .24 .35 .36	. 34 .40 .32 .44 .51	1.14 1.10 1.15 .20 .28	0 .04 0 0	.01 .02 .02 .17 .20	0 0 0 0
E6 8068 F9 8072 F9 8272 D2 8276 D2 8338	Searsville Lake Sebastopol 4 SSE Skaggs Spg. Las Lomas Ranch Slack Canyon Soledad	19.07 19.47 41.16 10.10 7.28	1.34 1.51 6.34 1.59 1.14	5.92' 7.36 14.69 3.80 1.30	.74 1.03 1.74 .08 .17	6.15 5.10 11.11 2.15 1.64	.26 .27 .33 .13 .09	2.55 2.17 3.64 1.81 1.54	.37 .31 .48 .13 .38	.90 .37 1.96 .28 .61	.79 1.25 .87 0 .21	.10 0 0 T	.05 0 0 .13 T	0 0 0 .20
02 8338-01 E2 8351 D2 8446 D2 8446-01 E6 8447	Soledad CTF Sonoma Spreckels Hwy. Br. Spreckels Spreckels Hill-Laguna Seca	7.02 19.53 10.60 10.52 11.04	1.00 2.30 1.35 1.36 .99	1.29 6.99 2.38 2.54 4.01	.15 .96 .42 .31 .15	1,48 5,62 2,24 1,98 3,87	.06 .20 .18 .12 .28	1.45 2.18 2.31 2.62 1.06	.32 .21 .39 .38 .14	.60 .25 .67 .56 0	.27 .75 .42 .45 .44	0 .04 T 0 0	.20 .03 T .30 .10	•20 •24 0 0
E6 8519 D6 8627 D1 8680 F9 8776~01 E2 8779	Stevens Creek Reservoir Suey Ranch Sunset Beach State Park Talmage Tamalpais Valley	18.32 10.17 12.62 20.96 M	1.92 1.83 2.38 3.60 2.49	5.58 2.87 3.73 7.18 6.95	.23 .21 .33 1.36 1.60	5,75 1,10 3,31 5,11 4,85	.22 .14 .26 .28 .18	2.67 2.20 2.03 2.26 2.47	.24 1.01 .11 .65 .51	.95 .38 .27 .48 .73	.60 .33 .10 0 1.62	0 T 0 M	.14 .10 .10 0 M	.02 0 0 1 1
D3 8849 F9 8885 E2 8920-21 E3 9006 F9 9122	Templeton The Geysers Tiburon-Topham Travis Air Force Sase Ukiah	M 34.96 M M 25.10	1.16 5.15 .90 1.03 3.68	3.90 12.16 6.87 3.67 7.75	.04 .98 .74 .44 1.68	2.59 9.86 4.25 3.09 6.77	.12 .30 .05 .03 .34	1.48 4.17 1.34 M 3.17	M .30 .49 M .46	.92 1.34 .43 M .92	.14 .58 1.34 M .19	0 0 M .14	.09 0 M 0	0 .12 M M 0
F9 9124 D6 9179 E4 9185 D1 9189 D3 9221	Ukiah 4 WSW Upper Morro Creek Upper San Leandro Filters Upper Tres Pinos Valleton	33.66 M 15.97 M 7.10	4.32 1.91 1.81 .76 1.42	9.52 6.77 4.12 1.59 2.63	2.36 .25 .58 .36	9.60 3.18 5.26 2.45 1.62	.56 .09 .19 .22 0	4.05 5.12 2.35 M 1.08	.67 .06 .32 .3D .20	1.99 1.09 .50 .36 .05	.50 .71 .75 M 0	.04 M .04 0 0	.05 M .05 .23 .10	0 M 0 0
E6 9270 F9 9273 E3 9305 E4 9420 E4 9423	Vasona Reservoir Venado Veterans Home Walmar School Walnut Creek 2 ESE	13.08 36.25 19.15 13.65 13.57	1.31 4.86 2.63 1.25 1.34	4.96 15.38 6.66 4.56 3.82	.12 1.45 .76 .21 .40	4.28 8.95 4.76 4.28 4.85	.18 .32 .23 .10 .10	1.37 3.36 2.90 1.64 1.73	.26 .32 .26 .27 .50	.23 1.16 .16 .62 .40	.19 .43 .56 .72 .40	0 .02 .20 0 0	.18 0 .03 0 .03	0 0 0 0
E4 9426 E4 9427 D1 9473 D0 9675 E3 9675-41	Walnut Creek 2 ENE Walnut Creek 4 E Watsonville Water Works Wilder Ranch Wild Horse Valley	11.94 11.49 14.47 M 28.04	1.24 1.27 2.59 1.48 2.83	3.64 3.23 4.48 5.58 10.05	.36 .43 .26 .33 1.11	4.16 4.16 4.68 4.82 6.51	.13 .12 .18 .23 .39	1.53 1.23 1.89 3.28 4.14	.27 .29 0 .41 .38	.33 .48 .23 .47 1.00	.27 .27 0 .70 1.57	T T M .06	.01 .01 .05 M 0	0 0 • 11 M 0

	SEASO	NAL	PR		PITA	TIO	N IS	963	-64					
NUMBER	STATION NAME	TOTAL	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUN.	JUL.	AUG.	SEP.
F9 9770 E6 9814 F8 9851 E3 9861	Woodacre Wrights Yorkville Yountville Gamble	28.37 27.67 30.20 17.28	3.55 3.83 5.13 2.32	10.24 9.85 10.13 6.44	1.19 .22 1.57 .82	6.40 7.21 7.61 4.27	.31 .30 .33 .18	3.81 3.13 3.04 2.23	.43 .30 .28 .14	.82 1.23 1.39 .21	1.58 1.32 .70 .61	T 0 .02 .03	.04 .28 0	0 0 0

TABLE A-3

	IN	ITERI	M M IN		HLY	FAHRENHE	RATURE 1963				
STATION NUMBER	STATION NAME		JULY	AU0.	SEPT.	NUMBER	STATION NAME		JULY	AUG.	SEP.
E6 0053	Alamitos Perc Fond	Max Min Avg Max Avg Min	96 46 81.4 51.6 66.5	94 46 82,1 52,2	98 50 81.9 55.4	F9 3578	Graton 1W	Max Min Avg Max Avg Min	97 42 82.2 48.0	97 43 85.3 47.7	96 44 82.0 49.4
E4 0064	Alamo 1N	Avg Max Min Avg Max Avg Min	97 34 84.0 51.3	67.2 99 43 86.9 52.4	55.4 68.6 100 47 84.6 54.3	E8 3714	Nalf Moon Bay 2NNW	Avg Max Min Avg Max Avg Min	65.1 69 46 65.0 51.5	66.5 73 46 64.1 51.0	65.7 73 48 67.0M 52.3M
E3 0212	Angwin Psc. Uninn Col.	Avg Max Min Avg Max Avg Min Avg	67.6 96 40 85.4 50.5 68.0	69.6 98 45 86.2M 54.8M 70.5H	56.3	E2 3734	Hamilton AFB	Avg Max Min Avg Max Avg Min	58.3 95 45 76.1 51.5	57.6 92 48 80.8 53.1	59.7N 96 48 80.1 54.1
D3 0360-01	Atascadero HMS	Avg Max Avg Max Avg Min Avg	102 44 91.2 53.4 72.3	70.5n 102 44 91.0 53.6 72.3	69.7 105 50 89.6 55.5 72.6	F9 3875	Nealdsburg	Avg Max Min Avg Max Avg Min Avg	63.8 102 41 88.5 50.6 69.6	67.0 104 47 90.6 52.9 71.8	67.1 105 48 89.5 54.0 71.8
D0 0674	Sen Lamond	Max Min Avg Max Avg Min Avg	93 41 80.6 46.9 63.8	95 44 81.5 47.8 64.7	98 42 83.6 47.5 65.6	D1 4022	Nollister	Avg Max Min Avg Max Avg Min Avg	94 94 44 79,1 49,5 64,3	71.8 96 42 79.8M 50.2M 65.0M	103 47 84.5 51.8
E4 0693	Berkeley	Max Min Avg Max Avg Min Avg	88 51 70.7 54.5 62.6	82 51 70.8 53.8 62.3	87 53 73.6 56.4 65.0	F9 4277	Inverness-Mery	Avg Max Avg Max Avg Min Avg	NR NR NR NR NR	NR NR NR NR NR	NR NR NR NR NR NR
E7 1206	Surlingame	Max Min Avg Max Avg Min Avg	92 44 75,8 50,6 63,2	85 44 75,9 49,8 62,9	89 47 78.4 53.5 66.0	E2 4500	Kentfield	Max Min Avg Max Avg Min Avg	97 44 80.2 50.8 65.5	96 46 82,8M	98 47 83.4M 53.6M
D4 1534	Carmel Valley	Max Min Avg Max Avg Min Avg	93 41 76.2 45.6 60.9	93 39 77.1 47.6 62.4	96 44 81.4 50.8 66.1	D2 4555	King City	Max Min Avg Max Avg Min Avg	97 35	97 44 83,5 49.6 66,6	105 43 87,0 51,6 69,3
F9 1838	Cloverdale 355E	Min Avg Max Avg Min Avg	103 46 87.4 52.7 70.1	102 46 89,2 53,3 71,3	104 48 86,8 53,8 70,3	E6 4922	Lexington Reservoir	Max Min Avg Max Avg Min Avg	97 41 84.2 48.7 66.7	98 41 85.4 50.0 67.1	97 46 84.7 51.9 68.3
F9 2105	Coyote Dam (Lake Mendocinn)	Max Min Avg Max Avg Min Avg	102 41 86.9 49.0 68.0	104 42 91.0 50.6 70.8	106 44 90.0 49.2 69.6	D3 4963	Linn Ranch	Max Min Avg Max Avg Min Avg	99 47 90.3 53.1 71.7	100 46 89.0 53.5 71.3	100 49 88.0 54.8 71.4
E6 2109	Coyote Reservoir	Max Min Avg Max Avg Min Avg	96 44 84.7 49.2 67.0	98 40 85,4 49,6 67,5	108 45 86.5 51.7 69.1	E5 4996	Livermore Sewage Plant		98 42 83.3 47.2 65.2	39	105 44 85.3 52.7 68.8
E4 2177	Crockett	Max Min Avg Max Avg Min Avg	98 51 82.2 54.3 68.3	96 51 84.1 55.2 69.7	102 53 83.6 57.7 70.7	E5 4997	Livermore 2SSW	Max Min Avg Max Avg Min Avg	99 43 85.8 49.8 67.8	102 43 88.1 50.3 69.2	105 45 86.1 52.0 69.1
00 2290	Davenport	Max Min Avg Max Avg Min Avg	73 45 63.7 50.3 57.0	73 48 64.0 53.0 58.5	77 50 68.9 53.3 61.1	E6 5123	Los Gatos	Max Min Avg Max Avg Min Avg	95 40 81.4 48.0 64.7	95 41 83.6 48.0 65.8	101 44 82.9 51.6 67.3
E3 2580		Max Min Avg Max Avg Min Avg	95 45 79.2M 51.7M 65.5M	94 48 79.8 52.6 66.2	102 49 83.2 53.8 68.5	E3 5333	Mare Ialand Naval SY	Max Min Avg Max Avg Min Avg	97 56 82,2 60,2 71,2	93 56 81,6 60,2 70,9	99 55 83,0 62,3 72,6
E3 2934		Max Min Avg Max Avg Min Avg	101 45 86.7 54.2 70.5	102 52 88.7 56.8 72.8	104 50 89.5 56.9 73.2	E4 5377	Martinez Fire Sta.	Max Min Avg Max Avg Min Avg	102 48 85.2 54.1 69.7	100 49 86.0 54.5 70.3	98 50 84.4 56.4 70.4
D1 3238		Max Min Avg Max Avg Min Avg	94 43 83.3 59.4 71.4	94 43 82.0 61.9 72.0	102 45 79.8 60.2 70.0			Max Min Avg Max Avg Min Avg	M M M M	M M M M	M M M M
01 3417	Cilroy	Max Min Avg Max Avg Min Avg	98 46 85.9 50.4 68.2	99 42 87.4 51.2 69.3	108 44 87.9 53.6 70.8		Mt. Diablo North Gate	Max Min Avg Max Avg Min Avg	97 45 83.8 55.5 69.7	47 86.3 60.0 73.2	105 49 83.8 58.5 71.2
F9 3557		Max Min Avg Max Avg Min Avg	97 42 81,2 50,2 65,7	95 44 83.5 49.2 66.4	96 46 83.3 51.7 67.5	E5 5933		Max Min Avg Max Avg Min Avg	84 43 75.1 58.0 66.6 M	86 42 76.5 60.5	90 43 76.0M 58.7M 67.4M

TABLE A-4

STATUS STATUS AUX AUX STATUS STATUS AUX AUX 12 60.8 Hape - Hoves Max 99 100 C 67 7447100 MOS Salat Mary 4 college Kos 72 39 13 60.74 Hape - Hoves Max 99 100 102 68 740110 MOS Kos 72 39 13 60.74 Hape - Hoves Max 49 100 102 68 740110 MOS Kos 72 39 13 60.74 Hape Ffacte Borgetial Kos 72 10 100 102 100 102 100 102 100 102 100 102 100 102 100		IN	TERI	M M 1N		HLY	FAHRENH	RATURE 1963				
13 608 Maps - Moren M		STATION NAME	Ι	JULY	T			STATION NAME		JULY	AUG.	SEP.
Num G3 46 69 90			Max		100	102		Saint Mary's College	Max.			99
Image Image <t< td=""><td></td><td></td><td>Min</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>43</td></t<>			Min									43
No.N			Avg Max			85.6			Avg Max			83.2
13 6074 Maps State Maps			AVE	66.3	67.6					66.7		68.1
NameN	E3 6074	Napa State Hospital	Max	99	100	105	D2 7668	Salinas 2E		90	84	93
ArgA			Min			46					42	48
No. 1No. 2No. 2 <th< td=""><td></td><td></td><td>Avg Max</td><td></td><td>51.8</td><td>53.3</td><td></td><td></td><td></td><td>51.6</td><td>51.9</td><td>52,9</td></th<>			Avg Max		51.8	53.3				51.6	51.9	52,9
1561441694<			AVE								62,4	65.4
Proof of the state o	E5 6144	Newark		M		94	02 7669	Salinas FAA Airport			83	95
No.e No.e <th< td=""><td></td><td></td><td>Min Mar</td><td></td><td></td><td>51</td><td></td><td></td><td>Min Avg Max</td><td></td><td>48</td><td>49</td></th<>			Min Mar			51			Min Avg Max		48	49
Pic 6.335 Oakland WAX Wa 3 01/-7 33 714 San Attento Hission Wa 64 64 76 6.335 Oakland WAX Max Mir 3, 53, 53, 53, 54 San Fran, Nichenou Max Max Mir 3, 64, 63, 55, 75, 75, 75, 75, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74			Ave Min						Avg Min		53.2	53.3
FX 6.335 Oakland Wake Hat			AV8	M		67.7			Avg	M	62.8	65.3
Prob Max Max <td>E4 6335</td> <td>Oakland WBAP</td> <td></td> <td></td> <td></td> <td>87</td> <td>D3 7714</td> <td>San Antonio Mission</td> <td>Max</td> <td></td> <td></td> <td>106</td>	E4 6335	Oakland WBAP				87	D3 7714	San Antonio Mission	Max			106
ProblemNormSys.3 <t< td=""><td></td><td></td><td></td><td>50</td><td>53</td><td>7/ 2</td><td></td><td></td><td></td><td>38</td><td></td><td>43</td></t<>				50	53	7/ 2				38		43
Path Atto City Hall Name 63,9 63,9 63,9 63,9 63,9 63,9 63,9 80 Para Reg 70,2 72,3 73,5 73,7			Ave Min	55.5	55.3	58.8				46.4	49.6	50,1
$ \begin{array}{ $			Avs	63.6	63.9	66.6			Avg	70,5	72.7	72.11
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	E7 6646	Palo Alto City Hall		96	89		E8 7767	San Fran, Richmond	Max			79
2768.269.369.369.499.999.999.999.999.799.			Min	45	45	48		Sunset	Min	50		52
mage mage 63.2 63.2 67.2 78.7 77.7 <th< td=""><td></td><td></td><td>Ave Min</td><td>52.9</td><td>52.8</td><td></td><td></td><td></td><td></td><td>53.0</td><td>52.4</td><td>55.2</td></th<>			Ave Min	52.9	52.8					53.0	52.4	55.2
P2 68:26 Petaluma P,S, No. 2 Max 99 99 102 57 779 San Francisco MAP Max 90 9			Avg	65.3	65.3	67.0				58.7	58.0	62.2
May 196 80.2 84.0 85.3 95.3 95.2	E2 6826	Petaluma F.S. No. 2	Max	99	98	102	E7 7769	San Francisco WBAP	Max	94	86	93
12 6926 Pinascle's National Yor, Nax Nax 602 0.52 693.0 87 777 San Prancisco Pedera Dífice Bullula Nax 602 0.53				45	41	46			Min Ava More	50	50	53
No. No. <td></td> <td></td> <td>Avg Max</td> <td>50.5</td> <td>49.7</td> <td></td> <td></td> <td></td> <td></td> <td>53.5</td> <td>53.9</td> <td>76.2</td>			Avg Max	50.5	49.7					53.5	53.9	76.2
Hin 41 42 4.5 6.7 9.7			Avg	65.4	66.9	69.0			Ave	62.2	63.5	66.3
	D2 6926	Pinnacles National Mon	Max	102	102	105	E7 7772	San Francisco Federal	Max	88	79	88
$ \begin{array}{ $			Min	41	42	45		Office Building	Min			54
Avg Form Avg Form Avg Sol Avg Sol Sol Avg Sol Sol </td <td></td> <td></td> <td>Avg Max</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Avg Max</td> <td>54 1</td> <td></td> <td>57.4</td>			Avg Max						Avg Max	54 1		57.4
E5 6991-05 Plassanton Nursery			Ave	70.2	72.1	72.5			Avg	59.7	59.8	64.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	E5 6991-05	Pleasanton Nursery	Max	99	102	102	E8 7807	San Gregorio 3SE	Max	89	78	88
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Min	43	42				Min		41	44
PB 7009 Point Arena Avg 68, 4 69, 6 69, 6 69, 6 65, 72 Avg 58, 70, 93 P1 7009 Point Arena Avg 10, 42, 10, 11, 42, 11, 42, 12, 42, 12, 42, 12, 42, 12, 42, 12, 42, 12, 42, 12, 42, 12, 42, 12, 42, 1			Avg Max	86.2	88.4	53 1			Avg Max	68.8	68.8	73.8
F8 7009 Point Arena Max 72 70 80 80 80 80 97 93 78 709 Point Arena Max 97 70 80 85 64,0 65,6 64,0 65,2 70 73 70			Ave Ave	68.4	69.6	69.6			AVE	58.8	58.3	61.9
Nin 39 47 45 Avg Nac 64,0 64,0 65,2 Avg Nac 57,2 64,0 65,2 Avg Nac 57,2 57,1 65,0 57,2 Base 69 70 73 66,0 62,0 Base 69 70 73 66,0 62,0 Avg Nac 67,2 55,7 60,7 80,0 66,0 Avg Nac 67,2 55,7 60,7 80,0 66,1 54,2 65,1 52,3 64 7070 Porte Chicago NaD Nac 99 99 100 100 102 100 103 102 103 102 103 102 103 102 103 104 103 102 103 103 104 103 102 103 104 103 104 104 103 104 104 103 104 103 104 103 104 103 104	F8 7009	Point Arena	Мах	72	70	80	E6 7821	San Jose	Max	97	93	98
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									Min		50	53
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Avg Max			69.2			Avg Max		88.2	80.0
D5 7024 Point Fiedras Blancas Max 69 70 73 56 7824 San Jose Decid FFS Max 97 93 64 700 Fort Chicago NAD Avg Max 64,3 65,9 % 67,6 Avg Max 64,3 65,9 % 67,6 Avg Max 68,2 63,0 51,0 Avg Max 68,2 63,0 51,0 Avg Max 68,1 69,3 Avg Max 68,1 69,3 Avg Max 68,2 63,0 51,0 Avg Max 68,1 69,3 Avg Max 68,1 69,3 Avg Max 68,1 69,3 Avg Max 68,1 69,3 Avg Max 69,1 Avg Max 68,1 69,3 Avg Max 61,6 65,6 <t< td=""><td></td><td></td><td>Avg Min</td><td>48.7</td><td>57 1</td><td>60.3</td><td></td><td></td><td>Avg Min</td><td></td><td>55.0</td><td>57.8</td></t<>			Avg Min	48.7	57 1	60.3			Avg Min		55.0	57.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D5 7024	Point Piedras Blancas			70	73	E6 7824	San Jose Decid FFS			93	100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Min						Min			52
E4 Toro Avg 57, 5 59, 00, 60, 7 For Avg 68, 1 69, 2 69, 1 60, 1 Avg 68, 1 69, 2 61, 1 61			Avg Max	64.9	65.91					82.4	83,5	83.2
$ \begin{array}{c} 86 \ 7070 \\ 86 \ 86 \ 7070 \\ 86 \ 7070 \\ 86 \ 86 \ 7070 \\ 86 \ 7070 \\ 86 \ 86 \ 7070 \\ 86 \ 86 \ 7070 \\ 86 \ 86 \ 86 \ 7070 \\ 86 \ 86 \ 86 \ 86 \ 7070 \\ 86 \ 86 \ 86 \ 86 \ 86 \ 86 \ 86 \ 86$				57.5	59.01				Avg min		69.3	57.1 70.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	E4 7070	Port Chicago NAD	Max	99		100	E7 7864	San Mateo	Max		91	96
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												50
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Avg Max	85,3	87.5	84.7			Avg Max	76.1		79.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Avg Min	52.4	70.0	69 3			Avg Min	65 3	65.8	56.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	F9 7109	Potter Valley P.H.	Max		103	102	E2 7880	San Rafael	Max	98	98	99
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Min	38					Min			50
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Avg Max	M	91.91	91.3M			Avg Max	79,6M	81.6M	84.51
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Avg min		70.51	69.6M			Ave nin			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D2 7150	Priest Valley	Max		102	104	E6 7912	Santa Clara University	Мах	97	NR	96
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Min	35	35							50
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Avg Max	91.3	91.5	89.0			Avg Max	80.3m		81.11
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Ave Min	68.2	68.4	67.7			Ave Him	66.5m		54.71
$ \begin{array}{c} \hline Avg Yax \ 81,3 \ 75,3 \ 81,6 \ 75,7 \ 75,6 \ 74,0 \ 64,2 \ 74,0 \ 64,0 \ 75,7 \ 75,$	D1 7190	Quien Sabe Hay Camp	Max	91		101	DO 7916	Santa Cruz	Max	95	91	96
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												45
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Avg Max	81.3	75.3	81.8			Avg Max	77.0		81.0
$ \begin{array}{c} \mbox{Fr} 7 \ 7339 \\ \mbox{Fr} 7 \ 733 \\$			Ave Ave	62.0	59.6	64.2			Ave	62.9		66.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E7 7339	Redwood City		98	98	99	D2 7959-10	Santa Rita Muther				81
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Min		46				Min			44
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Avg Max			85.1						68.9
$ \begin{array}{c} \mbox{E6} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			Avg Min	67.8	68.2	69.9			AVE MIN	M	M	49.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	E4 7414	Richmond	Max	88	84	95	F9 7964	Santa Rosa Sewage Plt.	Max	96	93	98
Avg Min 56.1 57.7 58.7 Avg Min 48.4 49.2 D4 7539-01 Roosevelt Ranch Max 86 92 90 99 99 99 99 91 11.6 51.7 56.7 7.7.9 Nrg Max 78.2 77.9 Nrg Max 78.2 77.9 Nrg Max 78.2 77.9 Nrg Max 78.2 77.9 Nrg Max 82.6 86.9 24.9 65.2 65.5 71.0 Nrg Max 82.6 86.9 11.6 4.3 44 44.2 49.2 <td></td> <td></td> <td>Min</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>45</td>			Min									45
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Avg Max	71.1	70.7	76.6			Avg Max	17.1		82.1
Da /539-01 Roosevelt Ranch Nax 86 92 90 F7/95 Santa Rosa Hex 93 24 Num 1 31 51 742 743 743 744 744 744 744 744 744 744 744 744 744 744 744 744 744 7444 7444			Avg min	63.6	63.2	67.7			Avg	63.0	64.9	66.5
Avg Max 73.2 74.2 77.9 Avg Max 82.8 86.0 Avg Min 57.4 58.8 66.1 Avg Max 82.8 86.0 Avg Max 82.4 49.5 Avg Max 82.4 49.5 Avg Max 82.4 49.5 Avg Max 82.4 49.5 Avg Max 84.7 Avg Max	D4 7539-01	Roosevelt Ranch	Max	86	92	90	F9 7965	Santa Rosa	Max	99	99	103
Avg Min 57,6 58,8 64,1 Avg Min Avg Min Avg 2 49,12 49,12 41,12 41,12 41,11 41,11 41,11 41,11 42,2 49,12 41,11 42,2 49,12 41,11 42,2 44,11 42,2 44,11 44,11 44,11 44,11 42,2				51		56			Min	43	44	45
Avg 65.3 66.5 71.0 Avg 66.0 67.8 E3 7643 Saint Helens Hax 102 103 M2 8338-01 Soledad CTF Max 91 86 Min 4/2 4/4 45 Min 4/2 4/4 4/2 4/4 4/2 4/4 4/2 Min 4/2 4/4			Avg Max	73.2		77.9			Avg Max		86.0	85.9 50,8
E3 7643 Saint Helena Hax 102 103 103 D2 8338-01 Soledad CTF Hax 91 86 Min 42 44 46 Avg Max 86,9 89,1 88,6 Avg Max 86,9 52,3 52,0			Avg Min	57.4	58.8	71 0					67.8	50.8
Min 42 44 46 Min 45 42 Avg Max 86.9 89.1 88.6 Avg Max 74.7 74.5 Avg Max 95.2.3 52.0 Avg Max 74.4 74.5	E3 7643	Saint Helens	Max	102		103	D2 8338-01	Soledad CTF	Max	91	86	103
Avg Max 86,9 89,1 88,6 Avg Max 74,7 74,5 Avg Min 50,9 52,3 52,0 Avg Min 49,8 49,7			Min		44		52 0000-01		Min	45	42	46
Avg Min 50.9 52.3 52.0 Avg Min 49.8 49.7			Avg Max		89.1				Avg Max	74.7	74.5	80.7
Avg 68.9 /0./ /0.3 Avg 62.3 62.1			Avg Min		52.3				Avg Min		49.7	51.3
			Avg	68.9	70.7	70.3			AVg	02.3	02.1	05.0

	IN	TERI	M N			TEMPEI	RATURE	1963	 		
STATION	STATION NAME		JULY	AUG.	SEPT.	STATION		TION NAME	 JULY	AUG.	SEP.
E2 8351	Sonoma	Max Min Avg Max Avg Min	100 41 86.1 48.1	103 43 89.0 48.8	103 44 89.2 50.5	TOPLES		III IIII			DDF-
D2 8446=01	Spreckels	Avg Max Min Avg Max Avg Min	67.1 90 48 72.1 51.7	68.9 85 45 72.8 50.5	69.9 90 46 77.4 51.8						
D3 8849	Templeton	Avg Max Min Avg Max Avg Min	49.9	61.6 103 43 89.6 50.6	64.6 107 47 89.8 52.9				-		
F9 9122	Ukiah	Avg Max Min Avg Max Avg Min Avg	69.4 103 44 88.5 51.9 70.2	70.1 103 46 90.4 53.2 71.9	71.3 103 47 88.8 51.8 70.3						
E4 9185	Upper San Leandro Filters	Max Min Avg Max Avg Min Avg	92 49 72.5	88 50 74.6 53.2 63.9	93 52 76.9 55.3 66.1						
E3 9305	Veterans Home	Max Min Avg Max Avg Min	101 41 88,4 52,2 70,3	101 40 88.9 51.9 70.4	101 40 85,9 51,7 68,8						
E4 9423		Avg Max Min Avg Max Avg Min Avg	99 46 84.9 51.1 68.0	101 47 88.0 51.0 69.5	101 45 85.3 52.3 68.8						
D1 9473		Max Min Avg Max Avg Min Avg	49.8	83 41 70.2 49.6 59.9	90 47 75.8 51.2 63.5						
E3 9675-41 F9 9770	Wild Horse Valley Woodacre	Max Min Avg Max Avg Min Avg	96 48 82.9 54.9 68.9 100	96 48 83.7 58 70.8 98	M M M 101						
19 9770	woodacre	Max Min Avg Max Avg Min Avg	38 81.9	41 82.6	44 84.0 49.9 66.9						

TABLE A-4

	MONTH		EM		ATU			963	-64					
NUMBER	STATION NAME		OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUN.	JUL.	AUG.	SEP.
E6-0053	Alamitos Perc. Pond	Max	87	70	72	64	75	79	87	82	99	95	101	99
		Min	39	36	29	30	30	26	35	34	41	45	48	44
	1	Avg Mox	73.4	62.6	55.5	57.0	63.9	63.8	69.1	69.9	76.3	82.9	81.5	81.
		Avg Min	51.0	42.9	35.1	37.6	38.0	39.0	42.8	45.1	50.2	53.9	54.1	51.
		Avg	62.2	52.8	45.3	47.3	51.0	51.4	56.0	57.5	63.2	68.4	67.8	66,
E4-0064	Alamo 1 N	Max	92	71	59	61	72	76	87	86	101	101	99	96
		Min	39	35	30	29	29	29	34	37	42	46	42	.43
		Avg Mox	73.2	60.5	48.6	54.3	60.7	63.0	70.3	71.6	79.0	87.5	89.7	81.
		Avg Min	48.6	41.4	34.8	35.4	35.4	37.1	40.8	44.3	50.4	52.1	54.3	49.
		Ava	60.2	51.0	41.7	44.9	48.1	50.0	55.6	58.0	64.7	69.8	72.0	65.
E3-0212	Angwin Pacific Union College	Max	92	66	62	61	71	74	83	82	99	99	99	98
		Min	40	36	33	29	26	29	28	27	37	43	44	38
		Avg Max	68.1	56.6	54.9	50.5	60.3	57.6	66.5	70.6	. 78.3	87.8	88.0	81M
		Avg Min	50.9	44.7	40.3	36.7	39.9	38.3	39.9	41.6	48.8	53.2	53.1	49M
		Avg	59.5	50.7	47.6	43.6	50.1	48.0	53.2	56.1	63.6	70.5	70.6	65M
D3-0360-01	Atascadero HMS	Max	96	80	73	76	76	80	94	. 88	106	105	104	100
		Nin	38	32	24	24	25	24	31	34	42	46	46	40
		Avg Mox	79.3	65.9	67.6	62.8	66.5		70.8	74.8	85.8	93.9	T	83.3
		Avg Min	48.9	39.3	30.2	31.0		34.4	39.3	41.7	50.9			47.
		Avg	64.1	52.6	.48.9	46.9	.48.2	50.0	55.0	58.2	68.4	74.5	75.4	65.
D0-0674	Ben Lomond	Max	92	71	67	63	72_	72	84	82	88	93	93	. 98
		Min	36	32	28	29	30	29	33	33	42	41	45	40
		Avg Max	75.2		61.0	57.0		64.4	67.2	68,8	76.4	83.1		79.5
	1	Avg Min	45.9	40.5	34.2	35.3	33.4	1	39.7	42.9	49.9	49.4		47.3
		Avg	60.6	50.7	47.6	46.2	48.6	1	53.5	55.9	63.2	_66.3	65.2	63.4
E4-0693	Berkeley	Mox	75	68	63	62	.75	75	85	72	83	- 82	82	91
		Min	45	41	34	37	39	36	40	43	49	_51_	53	51
		Avg Mox	68.3	61.0	54.6	54.7	61.5		62.6	.61-9	68.3	. 69.9	1	71-0
		Avg Min	52.9	48.0	39.7	41.7	43.5		.46.3	48.1	52.4	53_8		55.0
E7-1206	Burlingame	Avg	60.6 81	54.5 70	47.2 62	48.2	52.5 75	51.6 76	54.5	55.0	60.4	61.9	62.5 94	63.0
E/=1200	buringame	Mox	41	37	29	31	31	33	85	78 37	89 45	95 46	47	95
		Min Avg Max		62.7	53.7	57.2		63.9	67.1	67.8	73.9	78.0	1	44
		Avg Min		44.3	37.1	38.8		41.5	42.4	45.4	50.6	52.3		49.3
		Avg	61.3	53.5	45.4	48.0	50.8	1	54.8	56.6	62.3	65.2		63.9
D4-1534	Carmel Valley	Max	81	80	78	69	82	80	92	76	85	88	91	98
		Min	38	32	29	30	28	29	32	33	37	39	39	36
		Avg Max		67.3	67.3	61.6		63.2	65.7	66.1	72.6	75.3	1	77.3
		Avg Min	47.8	43.1	38.6	36.8		36.4	39.2	40.5	46.0		47.0	47.0
		Avg	61.4	55.2	53.0	49.2	-	49.8	52.5	53.3	59.3	61.5		62.2
F9-1838	Cloverdale 3 SSE	Mox	90	74	64	68	81	82	92	87	104	105	104	107
		Min	42	34	29	30	29	33	34	38	44	47	48	42
		Avg Max		61.7	52.9	55.1	66.3	-	69.6	73.3	81.9	91.9		85.6
		Avg Min	48.4	41.3	34.3	36.2	36.1	1	41.8	44.4	51.7	52.2		49.7
		Avg	60.2	51.5	43.6	45.7		51.8	55.7	58.9	66.8	72.1		67.3
F9-2105	Coyote Dam (Lake Mendo.)	Max	101	75	72	69	81	81	91_	82	102	106	103	104
		Min	34	32	25	26	24	27	32	32	42	44	47	38
		Avg Max		62.5	65.2	55.1	68.2	1	71.5	70.4	80.7		92.0	87.0
		Avg Min	1	38.8	32.1	34.5	29.8	33.5	36.5	40.9	48.9		51.4	44.6
		Avg	61.6	50.6	48.6	44.8	49	48.9	54.0	55.7	64.9	69.9		65.8

TABLE A-5

	MONT		EGRE					963	-64					
NUMBER	STATION NAME		OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUN.	JUL.	AUG.	SEP.
E6-2109	Coyote Reservoir	Max	93	74	68	63	72	78	90	88	104	103	100	102
		Min	32	27	24	23	25	28	28	33	40	39	41	36
		Avg Max	74.1	.61.5	57.6	55.1	62.3	62.2	67.9	71.8	.80.2	88.0	_86.8	82.1
		Avg Min	45.5	38.2	31.3	32.4	31.1	.34.0	36.7	40	46.7	48.4	48.1	44.8
	<u> </u>	Avg	59.8	49.8	44.4	43.8	46.7	48.1	52.3	55.9	63.5	68.2	67.4	63.4
E4-2177	Crockett	Max	83	71	56	63	77	78	85	80	99	100	97	99
		Min	44	38	31	31	33	34	37	42	50	50	53	48
		Avg Max	74.0	60.5	46.5	54.6	64.0	63.1	68.1	70.1	77.6	_84.5	84.1	80.4
		Avg Min	52.8	45.4	36.6	37.9	38.3	41.5	44.2	47.0	53.2	54.4	56.2	54,4
		Avg	63.4	53.0	41.6	46.3	51.2	52.3	56.2	58.6	65.4	69.5	70.2	67.4
DO-2290	Davenport	Max	72	73	77	72	72	70	74	62	69	72	68	81
		Min	46	42	39	37	38	38	39	41	45	46	48	45
		Avg Mox	65.9	61.1	60.2	56.3	59.4	56.2	57.0	56.0	61.2	77.7	63.5	66.2
		Avg Min	52.4	48.7	45.6	42.8	43.3	42.5	43.3	44.8	49.3	50.1	51.7	50.4
		Avg	59.2	54.9	52.9	49.6	51.4	49.4	50.2	50.4	55.2	63.9	57.6	58.3
E3-2580	Duttons Landing	Max	82	71	57	64	79	80	88	81	94	93	91	9.9
		Min	38	36	30	29	30	32	34	35	43	43	49	42
		Avg Max	72.3	61.8	50.4	55.5	65.2	64.3	69.0	68.7	75.3	78.6	78.8	80.0
		Avg Min	48.7	42.0	35.1	35.6	35.4	40.0	41.1	43.2	50.2	52.0	53.5	49.9
T 2 0024		Avg	60.5	51.9	48.7	45.6	50.0	52,2	55.1	56	62.8	65.0	66.2	65.0
E3-2934	Fairfield Police Sta.	Max	96	73	57	65	NR	80	89	88	102	103	103	102
		Min	39	34	25	29	31	32	33	40	47	51	50	48
		Avg Max	76.8	62.0	48.1	55.9	M	66.8 40.9	72.7	73.8	81.6	88.7	89.3 56.3	86.4 53.4
		Avg Min Avg	50.3	52.4	35.5	35.6	M	53.9	58.4	47.5	53.7 67.7	55.8 72.3	72.8	69.9
D1-3238	Fremont Peak State Park	Max	90	80	83	71	82	82	86	92	102	97	94	89
D1-3230	Fremont reak State rark	Min	42	27	24	26	26	26	28	32	35	42	36	31
		Avg Max	71.4	58.9	64.1	55.6	62.8	57.2	62.0	63.5	73.3	83.5	79.4	72.8
		Avg Min	52.4	45.8	43.5	37.2	37.3	37.7	42.7	44.9	51.8	60.8	57.6	48.2
		Avg	61.9	52.4	53.8	46.4	50.0	47.4	52.4	54.2	62.6	72.2	68.5	60.5
D1-3417	Gilroy	Mox	90	75	71	66	76	80	93	92	103	103	103	105
01 0111	01110)	Min	36	30	27	24	27	28	34	31	40	42	39	42
		Avg Max	76.6	64.1	58.3	58.8	65.5	65.2	70.7	73.7	81.9	88.4	88.3	83.2
		Avg Min	49.4	41.5	31.6	32.3	30.7	36.5	39.6	43.0	47.9	50.4	51.0	47.6
		Avg	63.0	52.8	45.0	45.6	48.1	_50.9	55.2	58.4	64.9	69,4	69.7	65.4
F9-3557	Graton	Max	88	72	59	65	78	79	92	84	98	104	102	106
		Min	38	35	28	31	31	32	30	33	39	41	43	38
		Avg Max	72.9	61.4	50.0	54.7	65.2	63.6	_70.5	71,3	79.8	85,2		84.7
		Avg Min	49.9	43.7	38.7	38.3	36.1	38.5	37.9	42.1	48.0	49.5	50.0	47.0
		Avg	61.4	52.6	44.4	46.5	50.7	51.0	54.2	56,7	63.9	67.4	68.4	65.9
F9-3578	Graton 1 W	Mox	8.6	69	57	63	78		87	81	99	99	99	101
		Min	36	33	25	28	27	27	30	33	40	40	42	38
-		Avg Mox	69.9	59.1	48.6	53.7	64M	63.0	69.3	70.7	79.3	85.4	85, 9	_82.9
		Avg Min	48.4	42.4	35.6	35.4	33M	34.7	37.6	40.9	47.2	48.1	48.7	46.7
		Avg	5.9.2	50,8	42.1	44.6	49M	48.9	53.5	55.8	63.3	66.8	67.3	64.8
E8-3714	Half Moon Bay 2 NNW	Max	75	68	70	69	72	73	77	64	68	72	69	84
		Min	43	41	35	35	36	33	38	.37	.42	_46	48	46
		Avg Max	67.5	62.0	62.0	59.0	64.4	59.6	57,7	57.9	62.2	64.4	66M	66.2
		Avg Min	51.5	48.8	41.4	39,8	40.3	40.9	44.3	45.7	49.8	51.8	52M	50.9
		Avg	59.5	55.4	51,7	49.4	52.4	50.3	51.0	51.8	56.0	58.1	59 M	58.6

TABLE A-5

	MONT		EGRE			IRE		963	-64					
NUMBER	STATION NAME		OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUN.	JUL.	AUG.	SEP.
F9-3875	Healdsburg	Max	97	77	60	67	82	85	93	89	105	106	105	108
		Min	42	35	29	31	31	34	34	37	44	46	47	42
		Avg Mox	76.0	63.3	51.0	56.4	68.0	66.8	73.8	75.5	83.5	91.1	90.9	87.7
		Avg Min	50.8	44.4	37.0	36.8	35.6	39.8	42.8	45.0	51.2	52.1	52.9	51.4
		Avg	63.4	53.9	44.0	46.6	51.8	53.3	58.3	60.3	67.4	71.6	71.9	69.6
D1-4022	Hollister	Max	82	75	69	68	79	80	93	84	90	92	95	103
		Min	34	28	25	24	26	27	31	М	41	43	43	40
		Avg Mox		64.4	60.5	59.7	66.6	1	69.9		74.9		82M	81.0
		Avg Min	48.1	39.4	30.5	34.4	31.2	35.1	39.8	42M	46.9	!	49M	1
		Avg	61.7	51.9	45.5	47.1	48.9		54.9	56M	60.9	1	65M	1
F9-4277	Inverness Mery	Max	NR	NR	NR	68	80	76	82	74	90	82	92	92
		Min	NR	NR	NR	32	33	32	34	38	40	40	42	40
		Avg Max	NR	NR	NR	60.0	65.6		64.7	63.8	70.8		74.8	74.6
		Avg Min	NR	NR	NR	41.0	38.3	40.4	42.1	45.4	48.8		51.2	
-		Avg	NR	NR	NR	50.5	52.0		53.4	54.6	59.8		63.0	
E2-4500	Kentfield	Max	85	70	59	64	78	79	87	84	95	98	99	100
		Min	40	37	30	31	33	33	34	37	44	45	47	42
		Avg Max		61.4	49.7	55.3	64.6		68M	69.4	76.6		83M	79.8
		Avg Min	50.2	44.6	37.5	37.7	37.3	39M	41M	44.5	50.1	51.1	52M	49.2
D0 / FFF		Avg	61.2	53.0	43.6	46.5	51.0		54M	57.0	_63.4		67M	64.6
D2-4555	King City	Max	87	82	77	74	79	83	95	87	N		95	104
		Min	34	29	25	23	25	26	32	32	N		M	
		Avg Max	78.5	68M 41M	67M 32M	62M 35M	69M 32M	68.3	73M 40M	73.0	M 48.7	M	86.6 M	1
		Avg Min	63.6	54M	50M	48M	51M	52.0	40M	42.5	48.7	M	M	1
E6-4922	Taniastos Presentato	Avg	90	74	68	48 M	71	79	86	57.8 85	102	101	100	65M 101
E0-4922	Lexington Reservoir	Max Min	36	31	27	27	29	29	31	33	39	40	40	38
		Avg Max	73.5	61.3	56.4		62.9		67.8	70.7	78.8		84.8	
		Avg Min	47.0	40.9	33.3	35.5	34.4	36.1	39.1	40.7	45.8	48.9	48.7	47.3
		Avg	60.2	51.1	44.8	45.8	48.7	49.0	53.4	55.7	62.3	67.8	66.8	64.4
D3-4963	Linn Ranch	Max	93	72	72	70	71	80	89	89	105	M	M	M
		Min	37	30	24	24	26	25	32	33	44	М	М	М
		Avg Max		61,9	59.8	56.8	63.6	63.4	70.2	74.4	85.2	М	M	M
		Avg Min		40.7	29.9	32.4	31.1	33.8	39.2	43.0	50.7	М	М	М
		Avg	61.9	51.3	44.9	44.6	47.4	48.6	54.7	58.7	68.0	М	М	М
E5-4996	Livermore Sewage Treatment	Max	98	74	66	63	74	80	86	86	102	102	101	100
	Plant	Min	22	30	22	22	24	26	30	34	42	45	44	36
		Avg Max	75.9	64.9	54.0	57.2	63.3	60.1	69.8	70.7	79.1	86.5	86.7	83.4
		Avg Min	44.6	38.0	31.6	32.7	30.8	36.9	37.6	42.5	49.5	52.6	51.7	47.5
		Avg	60.0	51.4	42.8	45.0	47.0	48.5	53.7	56.6	64.3	69.6	69.2	_65.5
E5-4997	Livermore 2 SSW	Max	98	72	61	64	73	79	90	90	105	105	104	100
		Min	35	28	20	22	26	25	29	34	41	42	43	44
		Avg Max	75.9	62.5	50.4	55.7	62.4	63.1	70.0	72.9	79.2	88.9	88.6	83.0
		Avg Min	45.6	37.5	29.2	31.5	31.0	34.9	37.5	40.1	47.2	50.4	52.1	49.9
		Avg	60.8	50.0	39.8	43.6	46.7	49.0	53.8	56.5	63.2	69.7	70.4	66.5
E6-5123	Los Gatos	Max	85	69	69	63	71	81	89	84	100	99	98	98
		Min	40	31	30	31	31	31	35	37	45	46	47	44
		Avg Max	73.5	61.5	55.1	57.6	62.8	64.5	69.6	70.2	78.5	83.5	83.7	81.2
		Avg Min	47.8	41.2	35.0	36.2	35.0	39.5	42.1	44.9	49.9	53.6	53.4	50.3
		AVG	60.7	51.4	45.1	46.9	48.9	52.0	55.9	57.6	64.2	68.6	68.6	65.8

TABLE A-5

			GRE		ATU FAHR			-00	04					
NUMBER	STATION NAME		OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUN.	JUL.	AUG.	SEP.
E3-5333	Mare Island	Max	84	72	55	62	76	80	90	87	95	95	M	M
		Min	48	42	33	37	40	38	41	43	51	55	M	М
		Avg Max	72.9	60,6	47.0	54.4	63.8	65.8	70.7	73.5	78.9	82.0	M	М
		Avg Min	57.1	49.4	39.8	42.6	44.2	46.7	49.1	51.8	57.3	59.6	M	M
		Avg	65.0	55.0	43.4	48,5	54.0	56.2	59.9	62.6	68.1	70.8	М	M
E4-5377	Martinez Fire Sta.	Max	88	72	58	62	80	80	90	86	102	102	100	102
		Min	40	36	28	30	33	33	35	40	47	49	52	48
		Avg Max	73.8		47.3	54.2	64.0	64.2	69.8	72.9	79.6	86.6	86.7	82.2
		Avg Min	50.5	43.4	35.9	35.7	37.0	40.7	43.6	47.6	53.3	55.0	55.7	52.8
		Avg	62.2	52.2	41.6	45.0	50.5	52.5	56.7	60.3	66.5	70.8	71.2	67.5
D4-5795	Monterey	Max	80	76	7.5	64	73	75	84	69	76	84	81	95
		Min	46	42	.34	36 .	38	37	39	42	47	48	48	48
		Avg Max	68.5	63.7	61.3	57.7	62.1	58.4	59.1	59.1	64.7	66.3	66.3	69.3
		Avg Min	53.1	48.8	44.6	42,5	43.1	42.8	44.2	46.1	50.1	51.6	52.2	51.7
		Avg	60,8	56.3	53.Q	50.1	52.6	50,6	51.7	52.6	57.4		59.3	60.5
E4-5915	Mt. Diablo North Gate	Max	90	72	74	73	68	77	85	84	101	104	100	100
		Min	39	34	32	31	33	31	31	32	40	45	46	44
		Avg Max	70.8	58.7	60.2	54.4	60,3	58.8	66.3	68.3	76.4	87.9	88.9	81.5
		Avg Min	51.6		42.3	37.6	40.8	39.3	41.8	43.9	50.4	58.8	59.0	54.6
		Avg	61.2		51.3	46.0	50.6	49.1	54.1	56.1	63.4	73.4	74.0	68.1
E5-5933	Mt. Hamilton	Max	87	69	68	58	63	65	75	75	89	89	88	89
		Min	34	28	26	25	24	22	25	27	34	38	38	38
		Avg Max	64M	52M	55M	45M	52M	47M_	56M	58M	67M	78M	78M	72M
		Avg Min	M	40M _	42M	33M	36M	3.3M	38M	43M	49M	61M	62M	54M
		Avg	M	46M	49M	39M	44M	4 0M	47M	51M	58M	70M	7 OM	63M
E3-6068	Napa - Haven	Max	90	80	60	64	80	80	89	88	100	100	RE	
	1	Min	35	30	24	26	28	26	31	34	40	44	RE	
		Avg Max	74.5	62.8	52.7	55.4	65.1	64.7	71.7	72.2	77.1	84.6	RE	
		Avg Min	47.1	40.2	33.3	34.6	32.7	36.5	39.0	1	47.5	50.4	RE	
		Avg	60.8	51.5	43.0	45.0	48.9	50.6	55.4 90	59.4	62.3	67.5 101	RE 98	104
E3-6074	Napa State Hospital	Max	89	72	62	66	80	85		85	98	46	49	42
		Min	36	33	28	28	30	29	31	33	42	1	83.2	83.0
		Avg Max	75.5		53.8	56.8	66.4	66.6	1		1	1		49.7
		Avg Min	49.1	42.6	34.2	36.0	<u>35.9</u> 51.2	36.8 51.7	40,9		49.7 64.1	<u>52.9</u> 68.3	<u>53.4</u> 68.3	66.4
		Avg	62,3 81	53.2 70	62	61	78	76	85	76	94	92	92	94
E5-6144	Newark	Max	41	39	30	30	30	29	37	40	49	52	54	50
		Min		1	54.0	56.7	62.7	61.2	66.0				76M	76.0
		Avg Max	71.7				36.9	40.4		1			58M	55.8
		Avg Min	<u>52.3</u> 62.0	45.4	36.5	38.6	49.8	50.8	55.2	1	62.8		67M	65.9
PL (225		Avg Max	76	67	61	62	72	74	78	65	83	84	83	89
E4-6335	Oakland WBAP	Min	46	44	35	36	41	43	39	44	51	53	55	53
		Avg Max	67.8		50.4	53.4	59.6	58,2	61.3	1			70.1	71.6
		Avg Max	56.1	48.8	40.3	43.3	45.0	47.4		1			57.8	56.6
		Avg	62.0	1	40.3	48.4	52.3	52.8	55.0		60.1	62,2	64.0	
E7-6646	Palo Alto City Hall	Max	81	71	62	64	75	76	85	77	93	93	93	95
E7=0040	Falo ALLO CITY Hall	Min	37	33	27	29	30	33	31	37	43	45	47	44
		Avg Mox	71.1	61.9	53.2	55,9	62.9	62.3	1		1		77.6	77.2
			48.7		34.8	36.2	35.0	1	1		1		54.4	49.2
	1	Avg Min	40.1	42.0	1 34.0	30.2	1 22.0	40.2	41.0	40.0	1.0.0		66.0	-

TABLE A-5

	MON		GRE		FAHR			302.	-64					
NUMBER	STATION RAME		OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUN.	JUL.	AUG.	SEP.
E2-6826	Petaluma F. S. No. 2	Max	90	73	60	65	80	79	88	80	99	99	100	104
		Min	36	31	25	25	28	29	29	35	41	42	.42	42
		Avg Mox	74.6	63,0	50.9	56.5	65.9	63.9	68.1	.68.7	76.2	82.4	83.6	83.
		Avg Min	48.8	42.5	35.9	35.0	34.4	37.1	39.9	43.5	48.2	50.1	50.4	49.
		Avg	61.7	52.8	43.4	45.8	50.2	50.5	54.0	56.1	62.2	66,3	67.0	66.
D2-6926	Pinnacles Nat'l Mon.	Max	101	82	78	77	79	82	92	89	107	105	102	104
		Min	32	26	24	24	25	26	29	31	40	42	42	38
		Avg Max	80.7	66.0	67.6	60.4	67.8	65.4	72.8	75.3	85.6	95.5	95.1	89.
		Avg Min	44.7	38,3	32.0	32.2	30.3	35M	37.7	40.5	46M	50.8	50.2	44.
		Ava	62,7	52.2	49.8	46.3	49.1	50M	55.3	57.9	66M	73.2	72.7	66.
E5-6991 - 05	Pleasanton Nursery	Max	96	78	61	60	74	86	90	90	106	104	103	101
		Min	33	30	25	24	26	28	32	35	40	44	47	43
		Avg Max	74.6	60.7	51.5	55.8	63.9	63.8	71	73	79.7	88.9	88.7	83.
		Avg Min	47.5	40.5	34.2	34.7	32.0	37.2	39.9	43.6	48.9	51.5	51.6	48.
		Avg	61	50.6	42.8	45.2	48.0	50.5	55.4	58.3	64.3	70.2	70.2	66.
F8-7009	Point Arena	Max	72	67	73	71	72	65	60	64	82	72	76	91
		Min	37	36	33	31	30	31	33	34	45	43	44	39
		Avg Mox	65.9	59.9	57.8	54.5	58.6	54.9	56.2	57.9	63.3	64.4	66.0	65.
		Avg Min	48.6	45,0	41.7	38.7	37.7	38.2	39.9	42.7	48.0	48.9	50M	46.
		Avg	57.3		49.8	46.6	48.2	46.6	48.1	50.3	55.7	56.7	58M	56.
D5-7024	Point Piedras Blancas	Max	72	72	72	64	70	70	71		68	70	74	76
		Min	50	43	41	40	40	38	36	М	43	42	44	41
		Avg Mox	67M	63.5	63.0	60.1	62.2	59.0	59.7	M	63.2	64.3	65.8	
		Avg Min	53.9	50.2	46.5	45.5	45.4	43.7	41.8	M	45.3	45.4	48.5	47.
		Avg	60M	56.9	54.8	52.8	53.8	51.4	50.8	M	54.3	54.9	57.2	57.
E4-7070	Port Chicago NAD	Max	91	71	57	62	77	80	87	87	102	104	100	99
		Min	37	33	28	м	28	28	30	35	47	49	48	45
		Avg Mox	74.7		47.3	55M	64,1	64.2	70.8	72.7	80.0	87.5	87.2	82.
		Avg Min		40.8	34.7	36M	33.2	35.8	39.5	44M	51.0	53.5	53.8	50.
		Avg	61,6	51,1	41,0	46M	48.7	50.0	55.2	58M	65.5	70.5	70.5	66.
F9-7109	Potter Valley P.H.	Max	99	71	M	71	81	80	89	88	104	108	104	105
		Min	30	27	21	23	24	22	28	28	40	44	39	38
		Avg Mox		61M	M	54M	68M	М	72M	77M	M	95M	95.4	M
		Avg Min	43M	37™	M	30M	28M	M	33M	40M	M	51M	50.3	M
		Ayg	60M	49M	M	42M	48M	M	53M	58M	M	73M	72.9	M 99
D2-7150	Priest Valley	Mox	97	73	72	76	69	76	86	87	104	103	101	
		Min	25	23	19	15	16	18	24	22	32	36	40	30
		Avg Max	74.5	-	61.9	55.2	61.6		68.0	73M	83.8	93.7	93.1	86.
		Avg Min	40.	33.1	24.5	25.4	23.8		32.0	36M	42.9	49.0	49.0	38.
-1 -1 -0.0		Avg	57.3	47.1	43.2	40.3	42.7	44.5	50,0	54M	63.4 101	101	95	101
D1-7190	Quien Sabe Hay Camp	Max	93	76	74	71	71	75	88	85		-		-
		Min	24	23	18	15	14	21	20	27	32	35 85.6	39 83.1	32
		Avg Mox	71.1	61.5		58.4 28.8	60.4 23.8	-		68.7 35.8		47.3	47.3	40.
		Avg Min	40.8								60.1	66.5		60.
P7 7000	De local Olive	Avg	56.0		1	44.1	42.1	44.6	49.6	52.2	97	98	98	99
E7-7339	Redwood City	Max	83	71	65	65	76	79	89 36	86 39	97	98 45	48	45
		Min	40	35	29	31	30	32	00			83.6	48 84,3	-
		Avg Max	74.	63.9	55.5	58.2	65.1	65.0	42.3	71.9	78.5	52.4	53.6	49.
		Avg Min	50.0	44.2	36.3	38.7	36.8	40.5	42.3	45.4	64.5	32.4	33.0	49.

TABLE A-5

		IN DI	EGRE	_	FAHR	_						_		
NUMBER	STATION NAME		OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUN.	JUL.	AUG.	SEP.
E4-7414	Richmond	Max	7 8	71	63	64	78	78	87	72	83	85	84	95
		Min	44	40	33	35	37	37	38	44	50	51	54	52
		Avg Max	70.7	63.1	54.3	56.6	64.0		64.7	63.5	68.7	68.8	69.9	73.0
		Avg Min	53.9	47.5	38.9	41.1	42.2		47.5	50.3	54.2	54.7	56.8	55.8
		Avg	62.3	55.3	46.6	48.9	53.1		-	56.9	61.5	61.8	63.4	64.4
D4-7539-01	Roosevelt Ranch	Max	79	72	71	73	72	75	85	78	85	84	86	90
		Min	51	48	48	44	43	41	42	43	49 69,2	50	52 73.9	50 70,5
		Avg Max	69.2 57.1	62.3 53.9	63.3 54.0	60.7 50.9	63.2 49.7	59.8 47.7		63.5	54.5	73.5	58.1	56.1
		Avg Min	63.2	58.1	58.6	55.8	56.4		56.6	56.4	61.8	65.7	66.0	63.3
E3-7643	Saint Helena	Ava	97	74	65	68	80	82	91		104	105	105	106
E3-7043	Saint Helena	Max												
		Min Avg Max	37	32 62.2	26	26 55.3	27 67.1	29	30 73.2	33 74.6	42 81.6	44 90,3	45 90.2	40
				41,3	34.2	34.4	34.0	36.4		43.2	50.0	51.8	51,9	48.9
		Avg Min Avg	48.8	51.8	44.0	44.9	50,6		56.2	43.2 58.9	65.8	71.1	71.1	67,6
E4-7661	Saint Mary's College	Max	91	67	59	61	74	77	87	86	102	101	99	96
E4-/001	Saint Mary's College	Min	36	30	24	25	25	27	29	34	45	45	44	41
		Avg Max		58.5	48.8	53.7	63,0		68.1	68.1	77.4	83.2	82.8	79.0
		Avg Min	47.0	39.9	33.8	33.5	31.6		38.3	43.2	50,2	54.0	53.6	49.5
		Avg	59,3	49.2	41.3	43.6	47.3	1	53,2	55.7	63.8	68.6	68.2	64.3
D2-7668	Salinas 2 E	Max	82	79	78	71	80	78	90	71	82	86	84	97
D2=/000	Salinas z E	Min	38	34	28	27	29	30	30	40	45	47	45	37
		Avg Max	74.1	66.6	65.6	61.0	67.4	63.4		64.7	70.0	71.8	72.7	74.3
		Avg Min	50.3	43,1	37.5	36.5	35.2	38,6	1	45.6	50.3	52.0	53.1	49.4
		Avg	62.2	54.9	51.6	48.8	51.3	51,0		55,2	60,2	61,9	62.9	61.9
D2-7669	Salinas FAA Airport	Max	83	78	77	67	80	80	91	72	83	87	85	98
D2-7007	burring in httport	Min	39	36	30	28	31	32	36	40	47	50	47	46
		Avg Max	7.3M	65.5		59.9	66.8	1	64.8	65.2	70.9	71.4	72.2	73.7
		Avg Min	52M	44.4	38,1	37.8	37.4	40,3	42.9	46,9	52,5	53,8	53.9	51,5
		Avg	62M	55.0	51.5	48.9	52,1	52.1	53.9	56.1	61.7	62.6	63.1	62.6
D3-7714	San Antonio Mission	Max	97	80	75	76	75	82	90	92	108	106	105	104
		Min	31	26	22	21	23	22	28	25	38	39	39	37
		Avg Max	80.1	66.5	66M	6 0 M	67.3	67M	73.7	78.5	88.4	98.0	97.5	91.1
		Avg Min	43.5	36.4	2 9M	29M	28.0	31M	34.3	36.6	44.9	49.6	47.9	43.0
		Avg	61.8	51.5	48M	44M	47.7	_49M	54.0	57.6	66.7	73.8	72.7	67.1
E8-7767	San Fran. Richmond Sunset	Max	75	69	60	69	72	72	77	63	69	68	69	90
		Min	44	42	36	35	36	34	38	42	47	46	49	47
		Avg Max	M	62.8	54.2	57.1	61.5	57.8	59.3	58.3	61.9	62.1	64.8	67.3
		Avg Min	52.9	47.7	40.7	41.7	42.2	42.6	45.6	47.9	50.8	52,3	55.0	.55.3
		Avg	M	55.3	47.5	49.4	51.9	50.2	52.5	53.1	56.4	57.2	59.9	61.3
E7-7769	San Francisco WBAP	Max	82	68	_64	61	72	74	85	70	91	91	89	92
		Min	45	39	33	33	36	36	40	43	49	51	52	48
		Avg Mox	70.4	61.9	53.3	56.3	61.6		63.4	63.7	69.7	71.6	73.1	73.2
		Avg Min	54.0	46.9		40.0	I		45.0	47.9	52.8	54.5	55.4	53.7
		Avg	62.2	54.4	46.3	48.2	50.8	51,9	54.2	55,8	61.3	63.1	64.3	63.5
E7-7772	San Fran. Fed. Off. Bldg.	Max	78	69	61	66	75	75	82	66	81	81	80	92
		Min	52	45	37	42	44_	43	44	44	49	50	52	50
		Avg Max	68.7	61.6		56.1	62.4	1	59.7	58.3	63.6	64.6	65.5	69.0
		Avg Min	57.1	51.7		45.8			47.8	48.4	52.0	53.1	54.5	55.8
		Avg	62.9	56.6	48.3	51.0	55.0	53.2	53.8	53.4	57.8	58.9	60,0	62.4

TABLE A-5

		IN DE	GRE	ES	FAHR	ENH	EIT							
NUMBER	STATION NAME		OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUN.	JUL.	AUG.	SEP.
E8-7807	San Gregorio 3 SE	Max	78	_M	77	68	74	74	.83	65	80	83	83	89
		Min	36	M	30	29	27	28	33	32	40	40	41	39
		Avg Max	69,4	M	63.3	58.4	62.8	58.5	60.4	59,8	66.0_	68.2	69.6	71M
		Avg Min	48.0	М	38.7	38.0	34.8	37.6	39.9	42.8	47.7	49.6	49.4	48M
		Avg	58.7	Μ	51.0	48.2	48.8	48.1	50.2	51.3	56.9	58.9	59.5	60M
E6-7821	San Jose	Max	М	М	_ M	65	76	80	87	80	95	94	94	98
		Min	М	M	M	34	36	35	39	41	48	48	48	46
		Avg Max	M	M	M	58.6	64.9	63.9	68.4	68.7	75.7	79.9	79.4	80M
		Avg Min	M	M	M	41.2	-	43.3	45.3		52.8	55.1	55.1	54M
		Avg	_M	M	M	49.9	52.8	53.6		58.3	64.3	67.5	67.3	67M
E6-7824	San Jose Decid, FFS	Max	88	72	67	64	77	82	93	84	99	96	100	101
		Min	42	37	31	32	34	34	38	41	47	48	49	48
		Avg Max	75.6	64.7	57.6	59.1		66.2		70.3	79.0	82.6	83.9	83.0
		Avg Min	53.4	45.6		40.2		42.0		47.6	52.7	55.3	55.8	53.1
		Avg	64.5	55.2		49.6		54.0	58.5	59.0	65.8	69.0	69.9	68.1
E7-7864	San Mateo	Max	81	71	65	63	72	76	85	73	92	94	91	96
		Min	45	41	31	35	37	36	38	42	49	50	52	44
]	Avg Max	72.2	63.7		1	64.1	62M		65.0	72.4	76M	76M	76.2
		Avg Min	54.4	48.1		42M	41.4	43M	45.3		56.6	57.9	58M	54.6
		Avg	63.3	55.9		5 OM	52.8	52M	55.1 89	1	64.5 97	67M 97	67M 97	65.4
E2-7880	San Rafael	Max	82	71	60	64	80	81		85	46	47	48	42
		Min	44	41	32	33	36	36	36	40		· · ·		
		Avg Max	74M	ú3M	52M	57M	66M	66M	70M	71.2	78M 52M	83.4	83.4	82.5
		Avg Min	51M	48M	38M	39M	40M	41M 54M	43M 56M	45.7	65M	52.5 68.0	68.1	67.0
		Avg	62M	55M	45M	48M	53M 76	80	88	82	96	92	96	96
E6-7912	Santa Clara University	Max	85	71	68		35	35	38	40	46	48	50	47
		Min Avg Mox	38	36	31 56M	32 58,6	1	66M	71M	71M	77M	82M	84.5	81M
		Avg Min	74 <u>M</u> 50M	<u>62M</u> 45M	37M	40.3	1	41M	43M	47M	52M	54M	57.3	53M
		Avg Min	62M	54M	46M		52.4	54M	57M	59M	65M	68M	70.9	67M
D0-7916	Santa Cruz	Mox	83	79	80	65	77	78	91	77	81	89	85	96
D0-1910	Santa Cruz		37	33	28	29	30	28	34	34	41	41	42	40
		Min Avg Max		65.2	1	59.0		63.9	67.4		74.4	78.2	76.3	77.2
		Avg Min	48.3	41.7	36.0		35.3	37.0	40.4		47.3	49.1	49.7	47.1
		Avg	60.9	53.5	49.5	47.7	50.4	50.5		56.0	60.9	63.7	63.0	62.2
D2-7959-10	Santa Rita Muther	Max	78	68	75	М	м	М	M	M	М	М	М	М
D2-1757-10	bonet Ares Mether	Min	40	33	31	M	M	M	М	М	M	M	M	M
		Avg Max	67.5	60.2	60.9	56.4	М	57.7	59.3	59.7	62.9	63.0	63.0	66.5
		Avg Min	48.3	40.5	36.2	34.7	М	36.8	41.9	46.4	50.2	50.7	50.9	49.5
		Avg	57.9	50.4	48.6	45.6	М	47.3	50.6	53.1	56.6	56.9	57.0	58.0
F9-7964	Santa Rosa Sewage Plant	Mox	90	71	67	65	81	80	86	78	97	96	95	96
		Min	32	32	25	27	28	29	30	34	41	44	45	42
		Avg Max		61.0		55.1	64.7	62.1	68.9	68.2	76.5	78.9	78.4	76.8
		Avg Min		44.2	34.6	33.8	33.8	33.9	38.5	42.5	49.0	49.7	51.2	49.2
		Avg	59.4	52.		44.4	49.2	48.0	53.7	55.4	62,8	64.3	64.8	63.0
F9-7965	Santa Rosa	Max	92	74	61	66	83	83	90	81	99	99	02	104
		Min	35	32	26	28	29	28	30	36	41	45	45	42
		Avg Mox		63.			66.7	65.2	70.9	71.0	78.9	84.5	86.0	83.4
		Avg Min	46.3	39.1			32.3	34.6	38.9	43.3	48.3	49.9	50.5	49.0
		Avg	60.6	51.	42.8		49.5	49.9	= 1 0	57.2	63.6	67.2	68.3	66.2

	MONTH				FAHR			963·	-64					
NUMBER	STATION NAME		OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	мат	JUN.	JUL.	AUG.	SEP.
D2-8338-01	Soledad CTF	Max	84	79	77	М	М	M	M	М	М	M	М	M
		Min	42	36	28	М	M	M	M	М	М	М	M	M
		Avg Max	73.1	65.4	65,2	59.7	65.6	63,1	66,2	65.7	72,2	74.5	75.0	76.0
		Avg Min	48.8	42.4	35.1	35.1	33.5	31.4	40.2	43.4	48.8	51,0	52.5	56,6
		Avg	61.0		50.2		49.6	47.3	53.2	54.6	60,5	62.8	63.8	66.3
E2-8351	Sonoma	Max		73	60	65	81	82	90	88	103	104	_	102
		Min	34	32	25	28	28	28	28	30	39	42	43	39
		Ανς Μαχ	76.0			55.8	66.9	67.0	73.0	74.4	81.5	88.6	88.5	86M
		Avg Min	46.5		35.3		33.9	36.2	37.9	41.0	47.1	48.6	49.1	46.5 66M
		Avg	61.3		43.2		50.4	51.6	55.5	57.7	64.3	68.6 80	68.8 102	66M М
D2-8446-01	Spreckels	Max	80	77	80	78	76	76	M	70 39	M	44	44	M
		Min	36	33	29	28	30	31	M					
		Avg Max	72.0			62.9	66.9	60.4	M	63.3	M	71.8	77.6	M
		Avg Min	48.6			34.7	33.7	38.2	M	54.0	M	62.4	63.8	M
		Avg	60.3 94	77	48.6	48.8 75	74	49.5 M	M	90	107	106	104	101
D3-8849	Templeton	Max												
		Min	35	29	23	22	24	_ M	M	32	40	39	42	36
		Avg Max	75.9	I	64.8		64.9 30.4	M	M M	73.4	84.5 48.1	93.1 50.7	91.1 51.2	84.3
		Avg Min	48.2	1		31.8	47.6	M	M	57.5	66.3	71.9	71.2	64.4
		Avg	62.0	73	47,2	65	82	81	92	88	105	110	106	108
F9-9122	Ukiah	Max Min	35	31	27	27	27	27	32	34	43	46	48	42
		Avg Max	74.5		59.5	55.1	67.7	64.4	71.6	73.8	82.0	90.9	92.5	88.1
		1	47.6			34.2	32.0	35.5	38.7	43.1	49.8	53.9	53.7	47.2
		Avg Min	61.1			44.7	49.9	50.0	55.2	58,5	65.9	72.4	73.1	67.7
-1 0105	N	Avg Max	80	71	62	62	76	78	86	75	90	90	90	96
E4-9185	Upper San Leandro Filters	Min	43	40	32	35	36	33	37	40	46	50	51	45
		Avg Max	70.2			55.5	62.8	60.9	64.8	63.6	69.2	73.3	74.3	73.9
		Avg Min	52.2		37.6		41.1	40.3	44.0	45.5	50.6	52.5	53.9	53.0
		Avg	-	54.1		47.6	52.0	50.6	54.4	54.6	59.9	62.9	64.1	63,5
E3-9305	Veterans Home	Max	88	69	63	64	76	78	90	91	104	105	100	100
53=3303	Veceraiis nome	Min	38	36	30	30	31	30	32	34	42	46	48	42
		Avg Max	72.7	63.0	55.0	56.1	62.5	64.3	72.6	77.5	84.8	90.2	88.0	83.4
		Avg Min		44.5	38.2	38.7	36.7	41.0	42.7	44.6	50.4	53.6	54.4	50.3
		Avg	60.4	53.8	46.6	47.4	49.6	52.6	57.6	61.1	67.6	71.9	71.2	66.8
E4-9423	Walnut Creek 2 ESE	Max	93	71	59	64	77	80	90	88	103	103	101	99
		Min	34	31	24	25	25	27	31	34	42	45	45	40
		Avg Mox		61.6	49.6	55.0	64.8	65,1	70.9	72.5	79,2	87.5	88.1	82.6
		Avg Min	46.8	39.7	34.0	32.9	31.3	34,9	38.7	42.9	49.4	52.4	52.6	47.6
		AVQ	60.8	50.7	41,8	44.0	48.1	50.0	54.8	57.7	64.3	70,0	70.4	65.1
D1-9473	Watsonville Water Works	Max	82	80	73	72	77	75	89	71	76	83	80	91
51-9415		Min	40	31	29	30	31	30	34	36	41	45	43	40
		Avg Max	71.5	64.0	61.6	59.4	64.8	61.7	64.2	63.3	68.2	70.0	70.3	71.6
		Avg Min	48.5	41.5	35.6	37.1	36.0	38.0	41.8	44.7	49.0	50.3	50,5	47.3
		Avg	60.0	52.8	48.6	48.3	50,4	49,9	53,0	54.0	58.6	60.2	60.4	59.5
E3-9675-41	Wild Horse Valley	Max	M	м	M	м	м	M	М	M	M	M	М	M
		Min	н	M _	M	x	M	M	M	M	M	М	M	M
		Avg Mox	M	M	M	M	M	М	M	Μ.	М	М	M	M
		Avg Min	Ň	M	M	M	M	М	M	M	M	M	M	M
		Ava	×	8	N.	11	1.15	M	M	M	M	M	M	M

NUMBER	STATION NAME		007	NOV.	DEC	JAN.	220	MAR.	APR.	MAY	JUN.	JUL.	AUG.	SEP.
			92	70	60	61	78	79	87	80	98	97	99	100
59-9770	Woodacre	Mox	32	30	23	25	23	25	28	34	41	42	42	38
		Min Avg Max				h	+	+	69.6	65.9	75.1	81.6	82.4	80.
		Avg Mox Avg Min					32.2		37.1	41.9	47.7	49.9	49.1	45.
			59.5	T	42.2	44.2	1	48.5	53.4	53.9	61.4	65.8	65.8	63.
		Avg	91		66	M	M	40.J M	M	1	1	1	M	M
3-9861	Yountville Gamble	Max Min	41	N M	23	M	M	M	M	M	M	M	M	M
		Avg Max				+	+	61.3	1	69.7	79.5	83.9	-	81.
		Avg Min		1	31.8		1	1	33.2	37.3	42.6	47.0		43.
		Avg Min	62.1	M	42.0	1	1	46.4	50.7	53.5	61.1	65.5		62.
		Max	02.1	14	42.0	44.0	40.4	40.4	130.7	55.5	01.1	105.5	04.0	02.
		Min							-				<u> </u>	+
		Avg Max		+								<u> </u>	1	t -
		Avg Min		-			<u>†</u>				1		-	
		Avg		1			<u> </u>	<u> </u>		1		1	1	1
		Max		<u>† – – – – – – – – – – – – – – – – – – –</u>			1		1			1	1	1
		Min					-				1		1	
		Avg Max					+				-	<u>+</u>	1	
		Avg Min					1							+
		Avg					<u>† </u>	<u> </u>		1				1
		Mox		1			1	1	1	-				1
		Min	-							-				1
		Avg Mox			-									
		Avg Min		1						1	1	1		1
		Avg			-				1	1	1			1
		Max						1						
		Min												
		Avg Mox												
		Avg Min					1.1.1	1						
		Avg												
		Mox			1				T					T
		Min							1					
		Avg Max			-					1.1				
		Avg Min	100	1	1.00		1.0	1	-					
		Avg												
		Max								1				
		Min					1.							
		Avg Max												
		Avg Min												
		Avg		1									1	
		Max				1000								-
		Min												
		Avg Max												
		Avg Min			-						-			
		Avg					-						-	-
		Max	1				-							
		Min												
		Avg Max						1					1000	
		ATT INGA	-	-		-	-	-	-	-	-	-	-	-

	INTERIM	1 MON	ιтн	LY	EVA	POF	RAT	ION	196	3				
NUMBER	STATION NAME		ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	иUL	JUL	AUG	SEP
E6 0053	Alamitos Perc, Pond	Evop,			1							9.37	8.40	6.38
		Wind						1				1,861	1,658	963
		Water Temp Water Temp Avg. Max. Water Temp					1	1	1			NR	NR	NR
		Water Temp					+	<u> </u>	-			NR		
		Avg. Min.							-		<u> </u>	NK	NR	NR
E7 1206	Burlingame	Evap.					1-	1			1	NR	6.84	4.86
		Wind					1		1			1,347	1,123	700
		Movement Water Temp Avg. Max.			1		+					86.5	85.0	84.2
		Water Temp Avg. Min.				<u> </u>	+	1	1			57.3	58.0	60.9
		Avg, Min.											50.0	00.7
F9 2105	Coyote Dam (Lake Mendocino)	Evop.			†		-	1				11.10	10.56	7.45
		Wind Movement	1		1		1	1		1	-	1.878	1,586	1,306
		Water Temp Avg. Max.	t		<u> </u>	<u> </u>		<u> </u>	-	1	1	84	84	80
		Woter Temp Avg. Min.		 	<u> </u>		-	<u> </u>						+
		Avg. Min.	-									53	53	52
E6 2109	Coyote Reservoir	Evop.						-				8.42	7.13	5.36
		Wind Movement			1						1	458	397	468
		Water Temp		1	1	1	-	1	<u> </u>	· · ·				
		Water Temp Avg, Mox, Water Temp Avg, Min,	-	<u> </u>			+	-	-	-	<u> </u>	NR	NR	NR
		Avg. Min.			+		+				+	NR	NR	NR
E3 2580	Duttons Landing	Evop.			+	1	1			1		9,32	8,36	6.36
		Wind Movement						1		1			3,110	-
		Water Temp					+	+						-
		Avg. Max. Water Temp										84.2	83.5	NR
		Avg. Min.						+				53.9	54.2	NR
D1 4022-10	Hollister Costa	Evop.	<u> </u>		† –		1	1			1	7.50	7.04	6.02
		Wind Movement							1	1		NR	NR	NR
		Water Temp Avg. Max. Water Temp								1	1	NR	NR	NR
		Water Temp		-	-	-	1		+	1		-		
		Avg. Min.		+			+					NR	NR	NR
E6 4922	Lexington Reservoir	Evap.				1	-	1	+-			8.67	7.95	6.22
		Wind										694	932	605
		Movement Woter Temp	1	1		1				-		NR	NR	NR
		Water Temp Ava, Max, Water Temp Avg, Min,	,							1	1	NR	NR	NR
						_								
E5 4996	Livermore Sewage Plant	Evap.	1									11,48	10.64	7.68
		Wind Movement										2,650	2,390	1,810
		Avg. Max.	°									NR	NR	NR
		Water Temp Avg. Min.	' 	<u> </u>						ļ	<u> </u>	NR	NR	NR
		-				-								
E5 6144	Newark	Evop. Wind							+		-	NR	NR	6.55
		Mavement										NR	NR	1,662
		Water Temp Avg. Max. Water Temp										NR	NR	NŔ
		Water Temp Avg. Min.	<u>`</u>			-	-					NR	NR	NR
						-	-	-			-	-		
D2 7845-10	San Lucas Guidici	Evop. Wind			-	-	+	-	-	-		9.72	7.58	
		Movement Water Temp			-	-	-	-	-		-	NR	NR	NR
		Avg. Max.	1-0-0		-		-			-		NR	NR	NR
		Water Temp Avg. Min	1	-	-	-						NR	NR	NR
						-					1			

TABLE A-6

	INTERI	M MOI	NTF	ILY	EVA	PO	RAT	ION	196	3				
NUMBER	STATION NAME		ост	NOV	DEC	JAN	FEB	MAR	APR	мач	JUN	JUL	AUG	SEP
D2 7959-10	Santa Rita Muther	Evap.										6.10	5.17	4.17
		Wind										NR	NR	NR
		Water Temp Avg. Max.						1				NR	NR	NR
1		Water Temp Avg. Min.	t				1					NR	NR	NR
		Avg. Min.	\vdash	 			<u> </u>				<u> </u>	MA	Internet	1111
F9 7964	Santa Rosa Sewage Plant	Evap.					+					10.09	8.59	6.71
19 / 904	Salica Kosa Sewage Franc	Wind	<u> </u>		1	<u> </u>						2,937	2,367	
		Movement Water Temp	<u> </u>											
		Avg. Max.	<u> </u>									NR	NR	NR
		Wind Movement Water Temp Avg. Max, Water Temp Avg. Min,	<u> </u>								-	NR	NR	NR
F9 7965-03	Santa Rosa Pedranzini	Evap.										6.90	4.79	3.74
		Wind Movement						1				NR	NR	NR
		Water Temp Avg. Mox.										NR	NR	NR
		Mavement Water Temp Avg, Max. Water Temp Avg, Min,					1	1				NR	NR	NR
					1								1111	-
D2 8338-01	Soledad C.T.F.	Evap.	1				1					8.96	8.26	6.99
		Wind	1									5,027	4,109	3,506
		Mavement Water Temp			<u> </u>						<u> </u>	78.0	77.7	
		Water Temp Avg, Max, Water Temp												
		Avg. Min.	+									49.9	49.6	51.7
		-		+			+	<u> -</u>						
E3 9861	Yountville Gamble	Evap. Wind										8.43	5.72	
		Mavement					<u> </u>					1,686	1,522	1,077
1		Water Temp Avg. Max. Water Temp		1										
		Water Temp Avg, Min,					L							
			1	1										
		Evap.			1									
		Wind Movement				ł								
		Wind Mavement Water Temp Avg. Max. Water Temp												1
		Water Temp Avg. Min.							1	1				
							1	1						
		Evap.				1			1					
		Wind					1							
		Movement Water Temp Avg, Max,	1				<u>† </u>					+		
		Avg, Max, Woter Temp Avg, Min,	1		<u> </u>	1		+			-	-		
		Avg. min.	+		+		1		<u> </u>		+	-		
		Evop.	1									1		-
		Wind							-					
		Wind Movement Water Tamp Avg. Max.	<u> </u>	-		<u> </u>	+		-					-
		Avg. Max.				1				<u> </u>	<u> </u>			
		Water Temp Avg. Min.	1								-			
		Evop. Wind					-		1				-	
		Movement										-		
		Water Temp Avg. Mox,	1											
		Avg. Mox. Water Temp Avg. Min.	·					1						
		_	-				-							
		Evap.									1			
		Wind Movement												
		Water Temp Avg. Max. Water Temp	·											
		Water Tamp Avg. Min,			-									
														1

TABLE A-6

	MON	ΓHLY	EVA	PO	RAT	ION	196	63-6	54					
NUMBER	STATION NAME		DCT	NOV	DEC	JAN	FEB	MAR	APR	мат	ллг	JUL	AUG	SEP
E6 0053	Alamitos Perc. Pond	Evop.	3.85	1.90	1.09	1.71	3.36	4.59	6.68	7.24	9.11	9.81	9,18	7.20
		Wind Movement	965	1,087	619	1,070	662	1,069	1,674	1,721	1,558	1,182	1,538	1,707
		Water Temp Avg. Max. Water Temp	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
		Water Temp	NR											
		Avg. Min.	NK	NR	NR	NR	NR_	NR						
E7 1206	Burlingame	Evop.	3.29	1.04	0.93B	0.83B	2.68	3.76	5.58	6.13	6.86	8.04	7.47	6.0
		Wind Movement	509	472	269	438	612	870	1,086	958B	898	950	932	63
		Water Temp Avg, Max,	78.5	63.2	54.4	56.8	66.5	73.1	78.3	83.5	86.2	88.6	88.5	85.2
		Woter Temp Avg. Min.	56.0	48.3	41.1	42.6	43.1	46.6	49.3	53.0	55.6	57.7	57.5	54.6
F9 2105	Coyote Dam (Lake Mendocino)	Evop.	3.85	1.75	0.84	0.97	2.07	3.74	5.81	6.13	9.84	11.44	11.03	8,19
		Wind Movement	971	853	787	953	980	1,524	1,627	1,542	2,000	1,901	1,871	1,654
		Water Temp Avg. Max.	69	55	57	48	55	62	70.5		79.0		85.0	77.
		Water Temp	48	40	34	34	30	36	40.7	44.0	50,1	54.0	54.0	47.4
		Avg. Min.	40	40	54	54			40.1	44.0	30,1	34.0	54,0	
E6 2109	Coyote Reservoir	Evop.	3.19	1.24	0.65	1.09	2.06	2.74	4.32	5.76	7.00	8.88	7.84	5.3
		Wind Movement	396	238	89	335	3 9 3	560	585	517	412	261	646	543
		Water Temp Avg, Max, Water Temp	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
		Woter Temp Avg. Min.	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
E3 2580	Duttons Landing	Evop.	3.55	1.50	0.82	1.20	3.36	4.53	6.34	8.22B	8.43	9.73	9.37	7.56
		Wind Movement	1,995	1,719	2,022	1,618	1,766	2,483	3,071	4,202	3,950	4,001	3,853	2,907
		Water Lemo	73.6	NR	NR	53.6	63.7	68.5	73.6	NR	79.7	84.0	83.1	80.4
		Avg. Max. Woter Temp Avg. Min.	51.6	NR	NR	37.0	37.1	41.6	44.1	NR	51.9	54.6	55.0	52.6
D1 4022-10	Hollister Costa	Evop.	5.20	2.27	2.16	2.45	3,25	4.05	5.82	5.29	7.30	8.80	7.82	7.4
		Wind Movement	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
		Water Temp Avg. Max, Water Temp	NR	NR	NR	NR	NR ·	NR						
		Water Temp Avg. Min.	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
					-		- mix							
E6 4922	Lexington Reservoir	Evop.	3.64	1.48	1.24	1.41	2.56	3.77	5.33	6.07	7.01	9.25	8.58	6,60
		Wind Movement	826	1,225	568	1,143	1,003	1,166	1,051	907	679	841	1,235	1,371
		Water Temp	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
		Avg. Max. Water Temp Avg. Min.	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
E5 4996	Livermore Sewage Plant	Evop.	5.28	1.76	1.27	1.60	3.66	3.90	5.79	7.47	7.76	12.48	10.3	7.3
		Wind Movement	1,560	1,890	2,550	2,040	2,220	2,240					2,530	1,71
		Water Temp Avg. Max.	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
		Water Temp Avg. Min.	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
E5 6144	Newark	Evop.	3.88	1.77B	1.04	14.1B	2.68	4.09	5.94	6.70	7.30	10.29	9.64	8.24
		Wind Movement	1,564	1,374	1,270	1,221	1,206		2,006				3,457	3,087
		Water Temp	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	1
		Avg, Max, Water Temp Avg, Min,	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
		A State Million	LVK.	Ind		MR	AR	AR	DR	INR.	1115	UR.	AVK.	and .
	San Lucas Guidici	Evop.	4.19	2.09	1.79	1.76	3.58	4.87	7.17	7.04	8.06	10.37	7.23	6.04
D2 7845-10	BOUL MOOD OUTSTOT										NR	NR		6.04 NR
D2 7845-10		Wind	NR											
D2 7845-10		Movement	NR	NR	NR	NR	NR_	NR	NR	NR			NR	
D2 7845-10		Movement	NR NR NR	NR NR NR	NR NR	NR NR NR	NR NR NR	NR						

TABLE A-7

	MON	THLY	EVA	POL	ION	196	5 3- 6	54						
NUMBER	STATION NAME	JAN	FEB	MAR	APR	YAM	JUN	JUL	AUG	SEP				
D2 7959-10	Santa Rita Muther	Evap.	3.30	2.31	1.93	1.06	4.57	2.72	4.14	4.75	5.61	5.88	5.30	4.96
		Wind Movement	1,432	2 1,533	1,913	3 946	1,584	2,243	1,942	2,323	2,063	1,897	1,072	1,053
		Water Temp Avg. Max. Water Temp	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
		Water Temp Avg. Min.	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
F9 7964	Santa Rosa Sewage Plant	Evop.	3.176	61.634	.634	.99	2.78	1.585	5.995	6.187	7.821	10.13	18.625	7.116
		Wind Movement	1,834		1,207	7 1,714	1					2 3,213		
		Water Temp	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
		Water Temp Avg. Min.	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
F9 7965-03	Santa Rosa Pedranzini	Evop.	2.85	1.60	0.98	0.87	2.89	2.58	5.02	6.05	7.19	9.17	9.73	7.95
		Wind Movement	1	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
		Movement Water Temp Avg. Max.	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
		Water Temp Avg. Min.	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
D2 8338-01	Soledad C. T. F.	Evop.	4.49	2.46	2.69	2.36	4.57	5.06	6.06	7.22	8.40	8.21	7.36	7.18
		Wind Movement	3,043		-	1	32,962	+	-	1		1	1	
				61.3	1	59.7			66.2	· ·	72.2	74.5	75.0	76.0
		Water Temp Avg. Min.	48.4	1	34.5	35.8		5 31.4	40.2		48.8	51.0	52.5	56.6
		144 M. 1911	40.11							40.14	40.00	5	52.5	50.0
E3 9861	Yountville Gamble	Evap.	3.28	1.04	0.89	1.18	3.44	3.51	5.60	6.31	7.35	8.55	8.32	7.32
	Toureview out	Wind	1,046	+ +		1,413		1						
		Mavement Water Temp Avg, Max.		NR NR	NR	1,413 NR	1,802 NR	NR	1,857 NR	1,836 NR	NR	NR	1,099 NR	NR
		Water Temp	P NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
		Avg. Min.	INK	INIX	INK	NR	NA	IVIN	INIX	NK	INN	INK	INR	NR
		Evop.							1			-	-	
		Wind												
		Wind <u>Mavement</u> Water Temp Avg. Max. Water Temp		-		-								
		Water Temp	, '		<u> </u>	-	-	-	-			-	-	
		Avg. Min.				-		-			-	-		
		-	-	-			-		+			1	1-	
		Evop. Wind	+-	-		-							-	
		Water Temp		-									-	
		Avg. Max. Water Temp			-									
		Avg. Min.		-	-							-		
													-	
		E vap. Wind	-	-										
		Water Temp												
		Ava. Max.							+					
		Water Temp Avg. Min.				-							-	
			-											
		Evop. Wind												
		Water Temp	-	-		-						-		
		Ave. Mox. Water Temp	4	4	-				1			-		1
		Avg. Min.		-						-		-		\square
			-											
		Evap.		-		-								
		Wind Movement		-							-			
									-					1
			2					-	-	-	-			-
		Water Temp Avg. Mas. Water Temp Avg. Min.	P	-										

APPENDIX B

SURFACE WATER FLOW

ACKNOWLEDGMENTS

The Department of Water Resources gratefully acknowledges the assistance and contributions of the many public agencies, private organizations, and individuals whose cooperation greatly facilitated the preparation of this appendix. Special mention is made of the following agencies:

Federal

United States Geological Survey United States Bureau of Reclamation

Local

East Bay Municipal Utility District San Francisco Water Department City of Vallejo

INTRODUCTION

This appendix presents surface water measurement data collected and assembled by the Department of Water Resources. It contains information collected in the Central Coastal Area during the 1964 water year covering the period from October 1, 1963 through September 30, 1964.

Maximum and Minimum Tides

Along the Pacific Coast, there are usually two high and two low tides in a day. Because tides follow the moon more closely than they do the sun, the lunar or tidal day is about 50 minutes longer than the solar day. When a tide has occurred near the end of a calendar day, the corresponding tide may skip the next day and occur in the early morning of the third day. The two high and two low tides which are usually unequal are commonly designated as higher high, lower high, higher low, and lower low waters.

Table B-1 lists maximum and minimum tides at the Sacramento River at Collinsville and Suisun Bay at Benicia Arsenal, respectively. These data are obtained from graphical charts plotted by continuous water stage recorders. The values are in feet above -13.05 feet USC&GS mean sea level datum of 1929 at Collinsville and above -10.00 feet at Benicia Arsenal. The values in most cases represent higher high water and lower low water. During a calendar day in which three instead of four tides occurred, the high value represents lower high water in the case where higher high tide did not occur and the low value represents higher low water in the case where lower low tide did not occur. The maximum and minimum values at the bottom of each monthly column represent the extremes observed during that month.

-42-

At the bottom of each table the maximum gage height of record shown is measured from the same datum as the daily high and low values.

Daily Mean Discharge

Table B-2 presents mean daily discharges in Arroyo de los Coches mear Milpitas and in Butano Creek near Pescadero. Each of these stream gaging stations is equipped with a continuous water stage recorder. Each has a stage discharge relationship or rating developed. The rating gives the flow or discharge in cubic feet per second (c.f.s.) for each water stage or gage height at a station. Given the rating and continuous water stage record, mean daily discharges are determined by electronic data processing methods.

The rating is developed by making streamflow measurements with a current meter at various water stages ranging from near minimum to near maximum. Normally, the rating is fairly permanent where there is a fixed channel and a fixed flow regimen at the station. The rating varies, however, where the bed of the channel is of loose shifting sand and gravel or where vegetative growth builds up in the channel changing the flow regime. Where the rating is not permanent and varies periodically, more frequent measurements of discharge are necessary to accurately determine the discharge.

The daily values listed in Table B-2 represent daily mean discharge in cubic feet per second. These values are estimated when the flow is in excess of 140 percent of the highest measurement and when the previous and following flows are reasonably representative of conditions during a short period of missing record. The mean, maximum and minimum values at the bottom of each monthly column are representative of that month and year only. The acre-feet value for each month is a total of the daily values which are converted to acre-feet for the computation. The mean discharge under "Water Year

-43-

Summary" is an average of the monthly means. The maximum and minimum discharges are absolute instantaneous extremes that occurred during the year. The total acre-feet is the sum of the monthly acre-feet values.

The streamflow data reported herein are derived through the use of mechanical, arithmetical, and empirical operations and methods. The results are affected by inherent inaccuracies in procedures and equipment. It is, therefore, necessary to establish limits of accuracy for the reported data. The following is a listing of significant figures used in reporting streamflow data:

Daily flows - cubic feet per second

 0.0 - 9.9 Tenths
 10 - 99 2 significant figures
 100 - up 3 significant figures

 Means - cubic feet per second

 0.0 - 99.9 Tenths
 0.0 - 999 3 significant figures
 1000 - above 4 significant figures

Water year totals are reported to a maximum of four significant figures.

Daily Mean Gage Height

Table B-3 presents the daily mean gage height for Rector Reservoir near Yountville. These gage heights are to USC&GS datum and are indicative of the amount of water in storage.

Imports

Table B-4 presents monthly deliveries of water into the Central Coastal Area. This table indicates the water user and the source of the supply Monthly and water year total deliveries in acre-feet, average delivery in cubic feet per second, and monthly use in percent of annual are presented herein.

Numbering System of Recording Stations

To facilitate station identification, each gaging station was assigned a six-digit code. The method used in assigning these code numbers is as follows: The State was first divided into major hydrographic areas and each of these areas was assigned an alphabetic letter which is the first symbol of the six-part code. The second symbol was obtained by dividing the major hydrographic areas into stream basins of primary importance and assigning a digit from 0-9 with 0 generally being the valley floor. The symbol indicates the stream and/or branch on which the station is located. Where a stream crosses a valley floor the third symbol indicates the river basin from which the stream originates, and the fourth symbol now designates the stream. The last three symbols designate the relative number of the station on the stream system, except in the valley floor, where the last two symbols indicate the relative number. Station numbers increase numerically proceeding upstream. When a minor tributary enters the stream system the station numbers progress up the minor tributary and then up the main stem.

The major hydrographic areas and the stream basins which are reported in this volume are as follows:

Hydrographic Area D

DO	-	Santa Cruz	Coast	D3	-	Upper Salinas Kiver
D1	-	Pajaro-San	Benito Rivers	D4	-	Monterey Coast
D2	_	Lower Sali	nas River			

Hydrographic Area E

EO - San Francisco Bay E1 - Coast-Marin E2 - Marin-Sonoma E3 - Napa-Solano E4 - East Bay E5 - Alameda Creek E6 - Santa Clara Valley E7 - Bayside-San Mateo E8 - Coast-San Mateo

Hydrographic Area F

F8 - Mendocino Coast F9 - Russian River

On Plate 2 the first two symbols of the identification code are shown in each sub-area or basin with the last four symbols of the code shown at the recording station locations. All six symbols are indicated on the hydrographic area index, and on the alphabetic index to the streamflow and stage tables, and in the upper right-hand box of the table for each individual gaging station.

	Table	e B	-1		
DAILY	MAXIMUM	AND	MINIMUM	TIDES	*

DATE DATE <th< th=""><th></th><th></th><th>SACRAMEN</th><th></th><th>T COLLENS</th><th>111 F</th><th></th><th></th><th></th><th></th><th></th><th>STATION NO</th><th>YEAR</th><th></th></th<>			SACRAMEN		T COLLENS	111 F						STATION NO	YEAR	
1 12:37 N# 11:38 <th11:38< th=""> <th11:38< th=""> <th11:38< th="" th<=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th11:38<></th11:38<></th11:38<>														
2 15:37 NR 17:38 <th17:38< th=""> <th17:38< th=""> <th17:38< th="" th<=""><th>DATE</th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>JULY</th><th>AUG</th><th>SEPT</th><th>DATE</th></th17:38<></th17:38<></th17:38<>	DATE		-								JULY	AUG	SEPT	DATE
1 1	- F							15.98 12.38	15.88 11.81	15.55	11:71	16:20 12:74	16.45 12.30	1
3 12.01 MA 11.40 12.00 12.00 11.352 11.355 11.355 11.355 11.357 12.131	2						15.61 12.40	15.65 11.61E	15.60 11.70E	15.20 11.57	15.41 11.69	16.48 12.29	16.46	2
S 19:71 N# 17:30 17:32 <th17:32< th=""> 17:32 17:32 17:32 17:32 17:32 17:32 17:32 17:32 17:32 17:33 17:32 17:32 17:33 17:32 17:33 17:32 17:33 17:32 17:33 <th17:32< th=""> <th17:32< th=""> <th17:32< th=""></th17:32<></th17:32<></th17:32<></th17:32<>	3		NR				15.25 12.02	15.02 11.52	15.63 11.83E	15.28 11.50	15.82 12.01	16.76	15.20	3
5 13.11 MA 11.70 11.69 12.66 11.69 11.65 11.656 12.20 11.68 11.256 12.20 11.69 11.656 12.20 11.69 11.656 12.20 11.69 11.656 12.20 11.69 11.656 11.657 11.650 11.657 11.656 11.656 11.656 11.656 11.657 11.656 11.657 11.656 11.656 11.657	4	16.76 12.63			15.35	15.79 12.57	15.18 11.93	15.25 11.65E	15.20 11.62E	15.39 11.61	15.87 12.20	15.00 12.06	16.56 12.03	4
a 19:29 XB XB 12:20 12:22 11:36 <th>5</th> <th>16.71 13.11</th> <th>NR NR</th> <th>15.95 11.70</th> <th>15.58 11.83</th> <th>15.82 12.64</th> <th>15.35 11.90</th> <th>15.43 11.67E</th> <th>15.18 11.55E</th> <th>15.76 12.01</th> <th>16.32 11.66</th> <th>16.82 11.94</th> <th>16.65 12.29</th> <th>5</th>	5	16.71 13.11	NR NR	15.95 11.70	15.58 11.83	15.82 12.64	15.35 11.90	15.43 11.67E	15.18 11.55E	15.76 12.01	16.32 11.66	16.82 11.94	16.65 12.29	5
Image: Section of the section of th	6	16.56	NR NR	NR NR	15.76	15.73 12.16	15•30 11•93	14:50E	14:68 11:50E	14.75	14.66	16.91 11.98		6
e 12.27 12.10 MR 12.23 MR 11.36 <th>7</th> <th>16.63 12.23</th> <th>16:10 12:37</th> <th>NR NR</th> <th>16.02 12.65</th> <th>15.80 11.96</th> <th>15.25 11.66E</th> <th>14.96 11.42E</th> <th>15.10 11.69E</th> <th>16.10 12.08</th> <th>16.65 11.85</th> <th>16.92 12.02</th> <th>16.41 12.53</th> <th>7</th>	7	16.63 12.23	16:10 12:37	NR NR	16.02 12.65	15.80 11.96	15.25 11.66E	14.96 11.42E	15.10 11.69E	16.10 12.08	16.65 11.85	16.92 12.02	16.41 12.53	7
0 12:57 12:79 Ne 12:32 12:32 12:32 12:33 <th12:33< th=""> <th12:33< th=""> <th12:33< th="" th<=""><th>6</th><th>16.72</th><th>15.73 12.10</th><th>NR NR</th><th>15.86 12.23</th><th>NR NR</th><th>15.22 11.50E</th><th>15.05 11.50E</th><th>15.32 11.82</th><th>16.30 11.95</th><th>16.85 11.72</th><th>16.9C 12.13</th><th>16.05 12.61</th><th>8</th></th12:33<></th12:33<></th12:33<>	6	16.72	15.73 12.10	NR NR	15.86 12.23	NR NR	15.22 11.50E	15.05 11.50E	15.32 11.82	16.30 11.95	16.85 11.72	16.9C 12.13	16.05 12.61	8
1 15:50 15:52 15:22 15:23 17:23 17:25 <th17:25< th=""> 17:25 17:2</th17:25<>	9	16.40	15.70 12.05	NR NR	15.95	NR NR	15.55 11.67E	15+27 11+69E	15.51 11.98	16.59 11.68	16.80 11.54	16.65	15.81 12.60	9
12 NR 19:00 10:10 10:00	ю	16.67	15+79 12+13	NR NR	16.20	NR NR	15.75 11.69E	15.20 11.69E	15.74	16.70 11.58	16.72	16.39	15.88	10
NR 12:30 12:11 12:12 NR 12:00 <th10:00< th=""> <th10:00< <="" th=""><th></th><th>16.10</th><th>15.82 12.39</th><th>16.25 12.48</th><th>16.32 11.94</th><th>NR NR</th><th>16.08 12.15</th><th>15.36 11.93</th><th>15.99 11.69E</th><th>16.79 11.56</th><th>16.60 11.53</th><th>16.05</th><th>15.90</th><th>1 11</th></th10:00<></th10:00<>		16.10	15.82 12.39	16.25 12.48	16.32 11.94	NR NR	16.08 12.15	15.36 11.93	15.99 11.69E	16.79 11.56	16.60 11.53	16.05	15.90	1 11
10 NR 19:00 10:00	12	NR NR	16.07 12.56	16.18	16.46 11.98	NR NR	16.16	15.49 11.71E	16.33 11.70E	16.75 11.62	16.50 11.81	15.78	16.06	12
14 NR 19:81 19:81 19:81 19:81 19:81 19:81 19:83	13	NR NR	16.33 12.61	16.35	16.66	NR NR	15.67 11.60E	15.69 11.71E	16.60 11.72E	16.56 11.60	16.29	16.02	15.94	13
15 MR 19:25 10:39 10:41 19:16 11:36 11:36 11:36 11:37 19:97 19:88 19:87 19:88 19:88 19:89 19:88 19:89 19:88 19:89 19:88 19:99 <th19:89< th=""> <th19:89< th=""> 19:99<!--</th--><th>14</th><th>NR NR</th><th>16.68 13.01</th><th>16.24 11.91</th><th>16.60 11.90</th><th>NR NR</th><th>15.55 11.81E</th><th>15.94 11.69E</th><th>16.53 11.51</th><th>16.28 11.70</th><th>15.69</th><th>16.27</th><th>-</th><th>14</th></th19:89<></th19:89<>	14	NR NR	16.68 13.01	16.24 11.91	16.60 11.90	NR NR	15.55 11.81E	15.94 11.69E	16.53 11.51	16.28 11.70	15.69	16.27	-	14
16 MR 19:39	15	NR NR	16.58	16.38	16.44	16.06 12.10	15.34 11.66	16.23 11.69E	16.46 11.53	15.99	15.63	16.07		15
17 NR 19:23 19:29 19:29 19:23 19:23 17 18 NR 19:22 19:20 19:20 19:20 19:23	16	NR NR	16.30 12.19	16.39 11.84	16.43	15.63 12.70	15.40	16.49 11.74E	16.46 11.69	15.69	15.74			16
IB NR 19:22 19:30 19:40 19:35 19:40 19:20	17	NR NR	16.45	16.30 11.82	16.60	15.32 11.67	15.80 12.05	16.52 11.87	15.71	15.80	16.00			17
19 NR 17.280 19:28 <th12:29< th=""> 12:29 12:29</th12:29<>	18	NR NR	16.49	16.36	16.49 13.85	15.40	16.15 11.95	16.28 11.76E	15.40	15.91				18
20 MR 19:97 19:88 19:89 19:76 19:88 11:76 19:76 19:78 19:77	19	NR NR	17.19 14.80	16.21 11.85	16.18	15.55	16.15 11.87	16.11 11.00	15.42	15.93	16.21	14.98		19
21 MR 16:26 15:50 16:40	20	NR NR	16.80	16.15 11.86	16.80	15.77 11.70	16.26	15.42 11.63E	14.75	14.60	ł.			20
22 NR 15:66 15:19 16:25 12:59 16:36 12:59 12:59 16:36 12:59 <th12:59< th=""> <th12:59< th=""> 12:59<!--</th--><td>21</td><td>NR NR</td><td>16.02</td><td>15.50 11.91</td><td>16.80 13.47</td><td>16.10 11.72E</td><td>16.30 12.01</td><td>15.31 11.71E</td><td>15.39</td><td>16.14 11.92</td><td>16.31</td><td></td><td></td><td>21</td></th12:59<></th12:59<>	21	NR NR	16.02	15.50 11.91	16.80 13.47	16.10 11.72E	16.30 12.01	15.31 11.71E	15.39	16.14 11.92	16.31			21
23 NR 11:70 15:26 19:99 19:37 19:30 12:29 19:32	22	NR NR	15.44 11.98	15.26	17.10 13.54	16.24E 11.63	16.40 12.33	15.56	15.58	16.13	16.36	16.61	1	22
24 NR 12:03 19:73	23	NR NR	15.70	15.26 11.69	16.90 12.79	16.33E 11.70	16.33 12.01	15.95	15.99	16.32	16.59	16.49	15.94	23
25 NR 12:76 19:33 17:92 11:93 11:92 19:63 19:30 19:35 19:35 19:35 19:35 19:35 19:35 19:35 19:36 19:37 19:35	24	NR NR	15.67	15.75	16.73 12.30	16.68	16.23	15.53 12.09	16.00 11.96	16.42 11.85	16.51		16.20	24
27 NR 12:30	25	NR NR	15.70 12.05	16.13	17.00	16.37E 11.71E	15.69 11.75E	15.63	15.98 11.82	16.61	16.70 12.31	16.08		25
27 NR 16:30 16:60 17:20 16:37 16:37 16:37 16:40 15:46 12:38 27 28 NR 15:35 16:52 17:40 16:20 16:37 16:47 15:46 12:38 27 28 NR 15:35 16:52 17:40 16:22 15:42 16:37 16:47 16:47 16:47 16:47 16:43 <th>26</th> <th>NR NR</th> <th>16.00</th> <th>16.50 12.30</th> <th>17.38</th> <th>16.23E 11.79E</th> <th>15.49 11.80E</th> <th>15.70</th> <th>16.30 11.97</th> <th>16.77</th> <th>16.71</th> <th>15.78</th> <th>16.66</th> <th>26</th>	26	NR NR	16.00	16.50 12.30	17.38	16.23E 11.79E	15.49 11.80E	15.70	16.30 11.97	16.77	16.71	15.78	16.66	26
20 NR 15:35 16:62 17:10 16:22 15:46 16:16 16:15 16:09 <th16:09< th=""> <th16:09< th=""> 16:09<!--</th--><th>27</th><th>NR NR</th><th>16.30</th><th>16.60 12.00</th><th>17.28</th><th>16.13 11.89</th><th>15.50 11.95</th><th>15.79</th><th>16.20</th><th>16.33</th><th></th><th></th><th></th><th>27</th></th16:09<></th16:09<>	27	NR NR	16.30	16.60 12.00	17.28	16.13 11.89	15.50 11.95	15.79	16.20	16.33				27
29 NR 16:55 16:75 11:95 15:56 15:22 12:13 16:05 15:72 16:20	28	NR NR	15.35	16.63		16.21	15.62	16.12	-		1			20
30 NR 16.76 16.80 16.48 15.93 15.91 15.91 15.94 16.95 16.48 12.30 30 31 NR 16.48 16.48 15.93 11.61 15.95 15.91 15.94 16.48 12.30 30 31 NR 16.48 16.48 15.93 11.61 15.95 15.91 12.84 16.95 16.48 30 31 NR 16.48 16.48 15.93 11.61 15.95 15.91 12.84 16.95 16.48 30 31 NR 16.48 16.48 15.95 11.61 15.95 15.91 12.86 16.48 30 31 NR 11.77 11.49 15.95 11.48 11.49 1	29	NR NR	16.55	16.75	11.94	15.56	15.65	16.31	16.05	1		1		29
31 NR 16.80 15.90 15.90 15.80 16.10 16.70 31 31 NR 11.97 11.89 12.25 11.61 16.10 16.70 12.81 31 MAXIMUM NR NR 11.73 NR 11.49 11.41 11.41 16.75 16.95 <th>30</th> <th>NR NR</th> <th>16.76</th> <th>16.80</th> <th>16.48</th> <th></th> <th>15.63</th> <th>16.01 11.61E</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>30</th>	30	NR NR	16.76	16.80	16.48		15.63	16.01 11.61E						30
MAXIMUM NR NR NR 17.38 NR 16.40 16.52 16.60 16.79 16.85 16.95 16.66 MAXIMUM NR NR 11.70 NR 11.50E 11.42E 11.28 11.50 11.45 11.45 11.45	31	NR NR		16.80	16.13		15+98							31
11+46 11+94 11+85		NR	NR	NR	17.36	NR	16.40	16.52	16.60	16.79	1		16.66	MAXIMUM
	MINIMUM			AIK .	11.70	NR	11.50E	11+42E	11.28	11.50	11.46	11.94	11.85	MININGM

STATION NO WATER

E - Estimated NR- No Record

In order to machine process the dats in this table, it was necessary to avoid negative gage heights. Subtract 10.00 feet to obtain recorder gage height.

DATUM OF GAGE MAXIMUM PERIOD OF RECORD LOCATION PERIOD ZERO ON GAGE OF RECORD 1/4 SEC. T. & R. M. D. & & M. REF. DATUM GAGE HEIGHT DISCHARGE LATITUDE LONGITUDE FROM TO GAGE HT. DATE ONLY C.F.S. 0.00 USED -3.05 USCCS 1929 1929 38°04'25" 121°51'18" SW27 3N 1E 4/6/58 June 29-Date 9.2

. Station located 0.4 mi. SW of collinsville, 3.3 mi. NE of Pittsburg. Maximum gage height does not indicate maximum discharge.

Table B-1

DAILY MAXIMUM AND MINIMUM TIDES *

		SUISUN BA	Y AT BENI	CIA ARSENA	L	in	feet				E03300	1964	
OATE	OCT	NOV	OEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OATE
1	NR NR	NRR	NR NR	NR NR	12:58	17:85	12:85	12.52	13:23	12:16	13:15	13.35 7.86	1
z	NR NR	NR NR	NR NR	NR -IR	12.68 7.81	12.44 7.96	12.27 7.40	12.12	12.03 7.30	12.36 7.57	13.40 6.20	13.43 7.22	2
3	NR NR	NR NR	NR NR	NR NR	12.58 8.63	12•13 7•71	11.61 7.21	12.22 7.36	12.14	12.73 8.03	13.67 7.77	13.55 7.20	3
4	NR NR	NR NR	NR NR	NR	12.67 8.76	12.01 7.69	11.98 7.61	11.67 7.17	12.43 7.52	12+94 8+30	13.85 7.45	12.34 7.33	4
5	NR NR	NR NR	NR NR	NR NR	12.66	11.95	12.03 7.30	11.90 7.30	12.62	13.38 7.61	13.98 7.15	13.61 7.53	5
6	NR NR	NR NR	NR NR	NR NR	12.57	11.93 7.69	11.60 7.04	12.05 7.19	11.63 8.05	13.68 7.32	12+20 7+10	13.61 7.83	6
7	NR NR	NF NF	NR NR	NR NR	12.56	11.98 7.48	11.71 6.87	12.30 7.45	13.13 7.69	13.91 7.07	14.00 7.15	13.36 7.97	7
8	NR NR	N Ř N R	NR NR	NR NR	12.81 7.56	11.99 7.00	11.79 6.61	11.69 7.50	13.33 7.25	11.85 6.76	13.96 7.32	12.90 8.08	8
9	NR NR	NR NR	NR NR	NR NR	12.96 7.38	12.24 7.06	12.07	12.48	13.79	13.90	13.62	12.75 8.26	9
10	NR NR	NR NR	NR NR	NR	13.38 7.56	12.54 7.06	12.11 7.10	12.79 7.30	13.86	13.83 6.40	13.30 7.60	12.75 8.68	10
	NR NR	NR NR	NR NR	13.32	13.24 6.98	12.94 7.69	12:25	13.10 c.93	13.86	13.74 6.66	12.89	12.64 8.20	- 11
12	N R N R	NR NR	NR NR	13.45	13.22	13.09	12.38 7.10	13.42	13.80 6.57	13+49 7+01	12.61 6.11	12.64 8.19	12
13	NR NR	NŘ NR	NR NR	13.62	12.99	12.66	12.66	13.65	13.48	13.11 7.41	12.97 8.66	12.46 8.17	13
14	NR NR	NR NR	NR NR	13.51 7.21	13.11 7.00	12.55	12.97	13.53	13.16 6.98	12.68	13.07 9.01	12.45	14
15	NR NR	NR NR	NR NR	13.44	13.03	12+35 7+39	13.22	13.40	12.76	12.52	12.88 8.72	12.60	15
16	NR NR	NR NR	NR NR	13.45	12.57 7.20	12.46	13.37	13.27	12.60	12.75	12.93 8.39	12.78 7.62	16
17	NR NR	NR NR	NR NR	13.55	12.32	12.89 7.62	13.32	12.59	NR NR	12.99 8.62	13.11 6.22	12.99 7.84	17
18	NR NR	N R NR	NR NR	13.39	12.42	13.19 7.51	13.05	12.26	NR NR	12.92 8.31	13.14 8.01	12.96 7.79	18
19	NR NR	NR NR	NR NR	13.07	12.59	13.15 7.45	12.70 7.29	12.34	12.93 8.30	13.10 8.05	13.25 7.69	13.09 7.66	19
20	NR NR	12.70	NR NR	13.89	12.81 7.45	13.10 7.50	12+09	12.36 7.39	13.12 7.93	13.21 7.80	12.26	12.59 7.79	20
21	NR NR	12.17	12.34	13.79	13.00	13.10	12.31 7.12	12.57 7.73	13.12 7.70	13.25	13.63 7.90	12.99	21
22	NR NR	12.50	12.09	13.93	13.16 7.16	13.29 8.02	12+25 7=61	11.71 8.46	11.73 7.45	13.38	13.39	NR NR	22
23	NR NR	12.39	12.39E 9.26	13.76E 8.16	13.30	13.25	12.68	12.91 7.87	13.30 7.43	11.80 7.38	13.36	NR NR	23
24	NR NR	12.51	12.89	13.63	13.57	13+12 7+20	12.47	12.87	13.40 7.40	13.42	13.24	NR NR	24
25	NR NR	12:81	13.05	13.78E 7.30	13.40 6.80	12.67	12.53	12.87	13.53	13.51 7.59	12.92	NR NR	25
26	NR NR	13.20	13.63	13.93E 7.43	13.30	12:46 7:18	12.56	13.19 7.34	13.56	13.47	12.67	NR NR	26
27	NR NR	13.25	13.56 7.26	14.08E 7.05	13.16 7.12	12.53 7.49	12.69	13.12 7.12	13.18	13.23	12.85 8.40	NR NR	27
28	NR NR	13.65	13.66 6.71	14.28	13.11 7.50	12.81 7.78	12.90	12.83	13.02 7.38	12.99	13.04 8.74	NR NR	28
29	NR NR	13.80 6.89	NR NR	13.95	12.46	12.68 7.87	12.90	12.82 7.08	12.80	12.51 7.82	13.18 8.31	NR NR	29
30	NR NR	13.99 6.79	NR NR	13.55 6.87		12.76	12.66 7.10	12.63 7.11	12.23	12.77 8.08	13.68 8.28	NR NR	30
31	NR NR		NR NR	13.12 7.09		12.93 7.89		12.50 7.13		13.03 8.50	13.67		31
MAXIMUM	NR NR	NR NR	NR NR	NR NR	13.57	13.29	13.37	13.65	NR NR	13.91	14.00	NR NR	MAXIMUM
MINIMUM	NR	NR	NR	NR	6.76	6.96	6.71	6.50	NK	6+40	7.10	NR	MINIMUM

WATER YEAR

STATION NO

E - Estimated NR- No Record

* In order to machine procees the dats in this table, it was necessary to avoid negative gage heights. Subtract 10,00 feet to obtain recorder gage height.

	LOCATION	4		MAXIMUM		PERIOD C	OF RECORD		DATUM	OF GAGE	
		1/4 SEC. 7.8 R.		OF RECORD	•	DISCHARGE	GAGE HEIGHT	PEF	RIOD	ZERD	REF
LATITUDE	LONGITUDE	M D.8 8 M	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
38°02'26''	122*08'44"	5W6 2N 2W		6.72	3/5/62		Jug 29-Apr 40 Apr 40-Date	1929 1940 1942	1940 1942	-2.21 -5.00 0.00	USCGS USCGS USCGS

. Statico located on inshore side of wharf, immediately SE of Benicia. Meximum gage height listed does not indicete maximum diacharge. Perlod of record intermittent from 1929-1940.

Table B-2

DAILY MEAN DISCHARGE ARROYO DE LOS COCHES MEAR MILPITAS

I 2 3 4 5	0.0	NOV	IN SECOND P	EET									
1 2 3 4		NOV							T				r
2 3 4	0.0		DEC.	JAN	FE8	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OAY
3		0.0	0+2	0.1	0.1	0.0	0.1*	0.1	0.0	0.0	0.0	0.0	1
4	0.0	0.0	0.2	0.1	0.1	0.0	0.1	0.1	0.0	0.0	0.0	0.0	2
	0.0	0.0	0.2	0.1	0.1	0.0	0.1	0.1	0.0	0.0	0.0	0.0	3
2	0.0	0.0	0.2	0.1	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	
						0.00	0.1	0.11	0.0	C.0	0.0	0.0	
6	0.0	0.14	0.2	0.1	0.2	0.0	0.1	0.1*	0.0	0.0	0.0	0+0	
7	0.0	0.1	0.2	0.1	0.2	0.0	0.1	0.1	0.0	0.0	0.0	0.0	
8	0.0	0.1	0.2	0.1	0.2	0.0	0.1	0.1	0.1	0.0*	0.0	0.0	
9	0,0	0.1	0.3	0.1*	0.2	0.0	0.1	0.0	0.0	0.0	0.0	0.0	9
10	0.5*	0.1	0.1*	0.0	0.2	0.0	0.1	0.0	0.04	0.0	0.0	0.0	10
11	0.0	0.1	0.1	0+0	0.2	0.0*	0.1	0.0	0.0	0.0	0.0	0.0	n i
12	0.0	0.0	0.1	0.0	0.2	0.2	0.1	0.0	0.0	0.0	0.0	0.0	12
13	0.0	0.0	0.1	0.0	0.2	0.1	0.1	0.0	0.0	0.0	0.0	0.0	13
14	0.0	0.1	0.1	0.0	0.1*	0.1	0.1	0.0	0.0	0.0	0.0	0.0	14
15	0.0	0.2	0.1	0.0	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	15
16	0.0	0.1	0.1	0.0	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	16
17	0.0	0.1	0.1	0.1	0.1	0+1	0.1	0.0	0.0	0.0	0.0	0.0	17
18	0.0	0.1*	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	18
19	0.0	0.2	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	19
20	0.0	0.5	0.1*	1.5	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	2.0
21	0.0	0.2	0.1	2.0	0.1	0.1	0.1	0.0	0.0	0.0	0.0	J.0	21
22	0.0	0.2	0.1	1.9	0.1	0.2	0.0	0.0	0.0	0.0	0.0	0.0	2.5
23	0.0	0.3	0.1	0.6	0.1	0.1*	0.0	0.0	0.0	0.0	0.0	0+0	23
24	0.0	0.4	0.1	0.3	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	24
25	0.0	0.3	0.1	0.2	0.1	0.1	0.1	3.0	0.0	0.0	0.0	0.0	2 5
26	0.0	0.3	0.1	0.2	0.1	0.1	0.1	0.0	0.0	0.0	0.0	6.0	2.6
27	0.0	0.3	0.1	0.2	0.1	0.1	0.0	0.0	0.0	0.0	0.04	0.0	27
28	0.0	0.2	0.1	0.2	0.1	0.1	0.0	0.0	0.0	0.0*	0.0	0.0	28
29	0.0	0.2	0.1	0.2	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	29
30	0.0	0.2	0.1	0.2		0.1	0.0	0.0	0.0	0.0	0.0	0.0	30
31	0.0		0.1	0.1		0.1		0.0		0.0	040		31
EAN	0.0	0.2	0.1	0.3	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	MEAN
AX.	0.0	0.5	0.3	2.0	0.2	0.2	0.1	0.1	0.1	0.0	0.0	0+0	MAX
ALN.	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MIN
C.FT.		9	6	28	7	4	5	1					AC.FT.
							WATER	YEAR	SUMMARY				

STATION NO YEAR

E - Estimated NR - No Record				W	ATI	ER Y	EAR SUM	MARY					
NR - No Record & - Discharge measurement or observation	MEAN		MAXIMU					MINIM	UM			TOTAL	
of no flow made on this day.	DISCHARGE	OISCHARGE	GAGE HT	MO	DAY	TIME	OISCHARGE	GAGE HT	MO	OAY	TIME	ACRE-FEET	
# - E and #	0.1	27	2.85	1	20	2140	0.0	1,42	10	1	0000	53	

	LOCATION	4	MAXI	NUM DISCH	ARGE	PERIOD (OF RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	IDD	ZERO	REF
LATTODE	EGNOTODE	M D.B & M	CFS.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37726138"	121°51'45"	NW4 6S 1E	3.5E	2.71	2/14/62	9-16-59-Date	Ser 59-Date	195 ·		0.00	Local

Station located 200 ft. above Calaveras Road Bridge. 2.6 miles NE of Milpitas. Tributary to Coyote Creek via Penitencia Creek. Rec.rder installed Sep. 16, 1959. Table B-2

DAILY MEAN DISCHARGE

Butaos Creek or Pescadero

			IN SECOND	FEET				·					
OAY	OCT	NOV	OEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	DAY
1 2 3 4 5	2.4 2.5 2.3 2.5 3.0	2.8 3.0 3.2 5.7 15	9.5 9.0 8.7 8.4 8.1	5.9 5.9 5.9 5.9 5.9 5.9 5.9	8.4 8.0 7.6 7.5 7.5	4.5 6.2 4.4 4.3 4.2	5.8 4.9* 4.4 4.3 4.3	2.5 2.4 3.4 3.2 2.7	1.2 1.4 1.2 1.2 1.0	0.9 1.1 1.6 2.2 2.2	0.0 0.2 0.1 0.1 0.1	0.6 0.6 0.6 0.6 0.7	1 2 3 4 5
6 7 8 9	3.4 2.6 2.2* 2.9 2.9	27* 17 15 14 13	8.1 7.9 7.9 9.5 8.4	5.9 7.6 6.6 5.9 5.9	7.4 7.2 7.2 7.1 7.0	4.1 4.0 3.6 3.6 3.6 3.6	4.2 4.1 4.0 3.8 3.5	2.8* 2.3 2.5 2.3 2.0	1.0 1.2 2.5 5.5 2.9*	1.9 1.7 1.7 1.5* 1.1	0.1 0.1 0.3 0.3 0.4	0.8 0.8 0.7 1.0 1.0	6 7 8 9 10
11 12 13 14 15	16 5.7 4.1 3.5 5.7	13 13 13 28 38	7.9 7.6 7.4 7.1 6.9	5.9 5.7 5.9 6.1 5.9	7.0 7.1* 7.0 7.8	3.8 8.4* 5.0 4.3 4.0	3.5 3.5 3.5 3.4 3.3	1.9 1.5 1.6 1.6 1.4	1.9 1.6 1.5 1.4 1.4	1.2 1.4 1.1 0.9 0.8	0.2 0.1 0.2 0.3 0.5	0.8 0.8 0.6 0.9 1.1	11 12 13 14 15
16 17 18 19 20	7.9 5.0 4.1 3.7 3.5	21 19 18 65 54	6.9 6.9 6.9 7.1 7.4	5.7 6.1 11 12 57	6.9 6.4 5.9 5.7 5.3	3.7 3.5 3.6 3.4 3.4	3.1 2.9 2.9 2.9 2.8	1.8 2.6 1.7 1.9 1.3	1.2 1.7 1.3 1.3 1.4	0.8 0.7 0.6 0.9 0.8	0.7 0.3 0.3 0.2 0.3	0.9 0.9* 0.9 0.7 0.6	16 17 18 19 20
2 I 2 2 2 3 2 4 2 5	3.4 3.4 3.7 3.5 3.2	24 17 19 18 15	7.1 6.9 6.9 6.9 6.9	242* 65* 34 23 17	5.1 5.C 4.9 4.8 4.8	3.5 9.1 11 9.4* 8.1	2.6 2.6 2.8 2.7	1.3 1.6 1.5 1.3 1.3	1.5 1.0 1.0 0.9 0.9	0.9 1.1 0.8 0.8 0.9	0.4 0.5 0.5 0.5 0.7	0.4 0.6 0.4 0.4 0.4	2 ł 2 2 2 3 2 4 2 5
26 27 28 29 30 31	3.2 3.2 3.0 3.0 3.0 2.8	13 12 11 11 10	6.9 6.6 6.4 6.4 6.4 6.4 6.1	14 12 11 9.9 9.4 8.8	4.8 4.8 4.3 4.3	7.1 6.6 6.1 5.4 5.1 4.9	2.5 2.5 2.5 2.4 2.3	1.1 2.5 1.8 1.2 1.1 1.3	0.9 0.9 1.5 1.2 1.4	1.3 1.2 0.6 0.0* 0.0 0.0	0.7 0.7* 0.5 0.4 0.5 0.6	0.6 0.8 1.0 0.9	26 27 28 29 30 31
MEAN MAX M(N, AC, FT,	3.9 16.0 2.2 241	18.3 65.0 2.8 1090	7.5 9.5 6.1 458	20.3 242.0 5.7 1250	6.3 8.4 4.3 365	5.2 11.0 3.4 321	3.4 5.8 2.3 200	1.9 3.4 1.1 118	1.5 5.5 0.9 89	1.1 2.2 0.0 65	0.4 0.7 0.0 21	0.7 1.1 0.4 43	MEAN MAX MIN AC.FT.

E - Estimated NR - No Record & - Oischarge measurement or abse of no flow mady on this day # - E and #

WATER YEAR SUMMARY

STATION NO YEAR

E8 5200 1964

servotion	(MEAN)	1	MAXIMU	M		11	MINIM	UМ) (TOTAL	
	OISCHARGE	OISCHARGE	64GE HT	MO DAT	TIME	OISCHARGE	GAGE HT	MO	OAY	TIME		ACRE-FEET	
	5.9	705	12,00	1 21	0300	0.0	1	6	27	0830	J	4260	
				A A					L				

	LOCATION		MAXI	MUM DISCH	ARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DIS CHARGE	GAGE HEIGHT	PER	100	ZERO	REF.
	Conditione	M. 0.8.8 M.	C.F.S.	GAGE HT.	DATE	DIGGINANOL	ONLY	FROM	TO	ON GAGE	DATUM
87° 13' 49"	122* 21' 51"	SW14 88 4W	1340	16.21	1/31/63	June 62-Date	June 62-Date	1962		0.00	Loca1

Station located 1.7 mi. 5W intersection Pescadero Road and Old Stage Road in Fescadero. Tributary to Pescadero Creek. Recorder installed June 22, 1962.

DAY	22 22 32 31 31 31 31 32 32 32 32 32 32 32 32 32 32 32 32 32		STAGE	
SEPT.	352.98 352.76 352.75 352.13 352.13 352.13 352.13 352.13 352.13 352.13 352.13 352.13 352.13 352.13 352.13 352.13 352.13 351.14 35		TIME	
AUG.	357,60 357,60 357,60 357,60 355,99 356,99 356,99 356,99 355,60 355,60 355,47 35		DATE	
JULY	361.89 361.89 361.89 361.67 361.67 361.67 361.67 361.67 361.28 361.67 361.28 360.25 360.25 360.25 360.25 360.25 360.25 359.19 359.28 359.65 359.75 359.65 359.75 355.75 35		STAGE	-
JUNE	365.15 365.15 365.15 364.97 364.93 364.88 364.88 364.89 364.78 364.78 364.55 364.51 364.51 364.51 364.51 364.51 364.51 365.25 355.25 35		TIME	
MAY	368, 35 368, 35 368, 35 368, 35 368, 35 368, 35 366, 35 367, 55 367, 55 366, 43 366, 42 366, 42 366, 42 366, 42 366, 42 366, 58 366, 42 366, 58 366, 5	STAGES	DATE	
APRIL	369, 81 369, 75 369, 75 369, 75 369, 75 369, 75 369, 27 369, 27 369, 27 369, 27 368, 95 368, 97 368, 97 368, 97 368, 97 368, 97 368, 97 368, 77 368, 86 368, 97 368, 67 368, 75 368, 7	CREST	STAGE	
MAR	370.04 370.05 370.05 370.05 370.05 370.05 370.05 370.09 370.09 370.09 369.65 369.69 369.65 369.65 369.65 369.65 369.65 369.65 369.65 369.65 369.65 369.65		TIME	
FEB	370.21 370.19 370.12 370.12 370.12 370.13 370.11 370.07 370.07 370.09 37		DATE	
JAN.	361.78 361.78 361.75 361.75 361.62 361.62 361.62 361.62 361.62 361.33 361.33 361.33 361.33 361.33 361.33 361.33 361.33 361.33 361.33 361.33 370.22 37		STAGE	3/0,07
DEC	361.88 361.94 361.94 361.94 361.98 361.98 361.98 362.03 362.12 362.03 362.03 362.03 362.04 362.03 362.03 362.04 362.03 362.03 362.03 362.88 362.03 362.88 36		TIME	
NOV.	358,10 358,10 358,13 358,41 358,41 358,44 358,44 358,44 358,90 359,54 359,61 359,61 359,61 359,61 350,42 359,61 359,61 350,42 359,61 350,42 359,61 350,42 359,61 350,420,420 350,420,420,420,420,420,420,420,420,420,42		DATE 1-23-64	-
0C1.	Clock out of Order Range: September 31 - November 1 359.25 to 358.10		E ~ Estimated NR - No Record	1.27211 DE1 1
DAY	300 300 300 300 300 300 300 300 300 300		ωZ	

TABLE B-4 Surface water imports to the central coastal area

OCT NOV DEC
988 16 14 7.9 7.5
5,108 3,455 82 58 8,2 5.5
10,255 7,476 165 125 6.5 4.7
16,737 14,865 270 248 8.3 7.1
17,540 18,480 283 308 9,1 9,6
3,973 173 65 13 2.8 0.1
2,301 487 37 8 9.6 2.3

.

APPENDIX C

GROUND WATER MEASUREMENTS

ACKNOWLEDGMENTS

The Department of Water Resources gratefully acknowledges the assistance and contributions of the many public agencies, private organizations, and individuals whose cooperation greatly facilitated the preparation of this appendix. Special mention is made of the following agencies:

Federal

United States Geological Survey

Local

Alameda County Flood Control and Water Conservation District	San Benito County
Alameda County Water District	San Jose Water Works
Campbell Water Company	San Luis Obispo County Flood Control and Water Conservation District
Cupertino, City of	Santa Clara, City of
Gilroy, City of	Santa Clara Valley Water Conservation District
Nonterey County Flood Control and Water Conservation District	Santa Cruz County
Yountain View, City of	Solano County
Vapa County	South Santa Clara Valley Water
North Los Altos Water Company	Conservation District
Pacheco Pass Water District	Stanford University
Palo Alto, City of	Sunnyvale, City of
	Watsonville, City of

INTRODUCTION

This appendix includes a figure and three tables. Figure C-1, "Fluctuations of Water Levels in Wells", presents hydrographs of 21 selected wells in 19 selected basins or areas. Table C-1, "Ground Water Level Conditions in the Central Coastal Area, Spring 1964", presents average depths to ground waters and average changes by basin and region from the spring of 1963 to the spring of 1964. Table C-2, "Description of Selected Wells", provides a description of 204 wells for which ground water level data are presented in Table C-3, "Ground Water Levels at Wells". A description of the items in Tables C-2 and C-3 follows.

DESCRIPTION OF SELECTED WELLS

Table C-2, "Description of Selected Wells", is arranged in region, basin, and well number order. The water pollution control board regions used in this report and shown on Plate 3, "Ground Water Basins or Units in the Central Coastal Area", are geographic areas defined in Section 13040 of the Water Code. Regions, ground water basins or units and subareas are listed by a numbering system as follows:

> <u>1</u> - <u>18</u> . 01 Region (North Coastal Region) Hydrographic Unit (Santa Rosa Valley) Subarea (Santa Rosa Area)

State Well Number

The state well numbering system used in this report is based on the township, range, and section subdivision of the Public Land Survey. It is the

system used in all ground water investigations made by the Department of Water Resources. In this report, the number of a well, assigned in accordance with this system, is referred to as the State Well Number. Under the system each section is divided into 40-acre tracts lettered as follows:

D	С	В	А
Е	F	G	H
М	L	K	J
N	Р	Q	R

Nells are numbered within each 40-acre tract according to the chronological sequence in which they have been assigned State Well Numbers. For example, a well which has the number 16N/12W-17K1,M would be in Township 16 North, Range 12 West, Section 17, Mount Diablo Base and Meridian and would be further designated as the first well assigned a State Well Number in Tract K.

gency Well Number

The agency well number is the number assigned to a well by any agency other than the Department of Water Resources in accordance with the numbering system used by that agency. Agencies that use the state well numbering system normally coordinate assignment of well numbers with the Department. These numbers, when common, are not shown in the "Agency Well Number" column; when Hifferent, the last five digits are shown in the "Agency Well Number" column.

gency Supplying Data

Each number in this column is the code number for a cooperating gency. The agency code consists of a five digit number, the first of which

-57-

is a region number. Thus, 32100 refers to Agency 2100 in Region 3. Because of the limitations of punch-card space, the agency code has been shown as a four-digit number without the region number. Therefore, the four-digit agency code should always be referred to the region in which the well is located.

The first digit of the four-digit agency code, as listed below, designates the type of well numbering system used by the agency.

Code	Well Numbering System
1	Location numbers
2	Monterey County Flood Control and Water Conservation
	District or Santa Clara Valley Water Conservation District
3	Serial numbers
4	Local numbers
5	State or U. S. Geological Survey
б	U. S. Bureau of Reclamation
7	South San Joaquin Irrigation District

The last three digits of the agency code, as listed below, are numbers that designate, within specified serial limits, the type of agency from which the data were obtained.

Code	Type of Agency	
000-049	Federal	
050-099	State	
100-199	County	
200-399	Municipal	
400-699	District - Water, Irrigation,	Conservation, etc.
700-999	Private	

The agencies and code numbers assigned to them in each of the regions are listed in the following tabulation:

Age	ency Code :	Agency
		North Coastal Region
-	5000	U. S. Geological Survey
1	5050	Department of Water Resources
		San Francisco Bay Region
	2400	Santa Clara Valley Water Conservation District
	5000	U. S. Geological Survey
	5050	Department of Water Resources
	5100	Alameda County Flood Control and Water Conservation
-	5100	District
:	5101	Napa County
-	5109	Solano County
-	5401	Alameda County Water District
		Central Coastal Region
	2100 and 5100 <u>1</u> /	Monterey County Flood Control and Water Conservation District
2	2400	Santa Clara Valley Water Conservation District
-	5050	Department of Water Resources
-	5101	San Benito County
-	5102	Santa Cruz County
-	5400	South Santa Clara Valley Water Conservation District
-	1/ In the Paso Robl	les subbasin of Salinas Valley (3-4.06), this agency
number 1	refers to the San Lu	is Obispo County Flood Control and Water Conserva-
tion Dis	strict.	

-59-

Well Use

Code	Well Use
1	Domestic
2	Irrigation
3	Municipal
4	Industrial
5	Injection
6	Drainage
7	Domestic and Irrigation
8	Test
9	Stock
0	Unused

The well use is indicated as follows:

Well Depth in Feet

Well depths shown were reported by the owner, obtained from a driller's log, or measured at the time of the well canvass.

Data Available

Under this heading, code numbers, as listed below, indicate the type of data that are available with respect to well logs, water analyses, and production records.

Data	Code
Log record	
Log	1
Confidential log (Sec. 7076, Water Code)	2
Water Analyses	
Mineral	1

Data	Code
Water Analyses	
Sanitary	2
Heavy Metals	3
Mineral and Sanitary	4
Production record	
Available	1
Pump test available	2

Record Begins and Record Ends

The last two digits of the year the record began or ended are shown.

GROUND WATER LEVELS AT WELLS

Table C-3, "Ground Water Levels at Wells", is arranged in region, basin, well number and date order. It includes measurements of depths to water in wells made from July 1, 1963, through June 30, 1964. Table headings discussed below are only those that were not discussed under "Description of Selected Wells".

Ground Surface Elevation in Feet

The numbers in this column give the elevation in feet of the ground surface from which depth to the water surface in the well is reported. The datum used is mean sea level, USC&GS datum, 1929. Elevations of ground surface are usually taken from topographic maps and the accuracy is controlled by topographic standards.

Date

The date shown in the column is the date on which the depth measurement, shown in the next column, was made. If the day of the month is unknown, it is indicated by 00.

Ground Surface to Water Surface in Feet

This is the measured depth in feet from the ground surface to the water surface in the well. Certain of the depth measurements in the column may be followed with an asterisk superscript to indicate a questionable measurement. Depth to ground water measurements may be questionable for such reasons as (a) well being pumped while undergoing measurement, (b) nearby pump operating, (c) casing leaking or wet, (d) well pumped recently, (e) air gauge measurement, or (f) recharge operation at well or nearby. The specific reason for any asterisk or any given measurement may be obtained from the Department of Water Resources.

Other symbols used are:

Measurement discontinued	#
Well destroyed	Q
No measurement for other reasons	

Water Surface Elevation in Feet

This is the elevation in feet of the water surface in the well based on mean sea level, USC&GS datum, 1929. It was derived by subtraction of the depth measurement from the ground surface elevation. Negative values indicate elevations below datum.

The words FLOW and DRY are shown in this column to indicate a flowing or dry well respectively.

Agency Supplying Data

Each number in this column is the code number for the agency from which the water level data were obtained.

TABLE C-1 GROUND WATER LEVEL CONDITIONS IN THE CENTRAL COASTAL AREA SPRING 1964

Ground Water Basia or Unit	Basin Number : Spri	Average Change in Ground Water Level <u>1</u> / ng 1963 to Spring 1964 (in feet)	 Average Depth to Ground Water Spring 1964 (in feet)
	Region 1		
Potter Valley	1-14.00	-0.7	7.3
Ukiah Valley	1-15.00	-1.5	7.2
Sanel Valley	1-16.00	-3.0	8.3
Alexander Valley	1-17.00	-4.4	8.9
Santa Rosa Valley Santa Rosa Area Healdsburg Area	1-18.00 1-18.01 1-18.02	-1.0 -3.5	14.0 16.0
Lower Russian River Valley	1-98.00	-4.2	13.6
	Region 1 Averages: 2/	-2.0	11.6
	Region 2		
Petaluma Valley	2-1.00	-0.2	23.4
Napa-Sonoma Valley Napa Valley Sonoma Valley	2-2.00 2-2.01 2-2.02	+0.6 -2.3	11.4 18.8
Suisun-Fairfield Valley	2-3.00	-2.1	8.9
ígnacio Valley	2-6.00	-2.3	17.4
Santa Clara Valley East Bay Area South Bay Area	2-9.00 2-9.01 2-9.02	-0.7 +6.9	60.0 116.3
Livermore Valley	2-10.00	-2.5	66.0
Half Moon Bay Terrace	2-22.00	-2,2	20.9
San Gregorio Valley	2-24.00	-1.3	10.4
Pescadero Valley	2-26.00	-2.1	8.2
	Region 2 Averages: 2/	+0.9	52.4
	Region 3		
Soquel Valley	3-1.00	+1.5	64.1
Pajaro Valley	3-2.00	-4.1	64.8
Gilroy-Hollister Valley South Santa Clara County San Benito County	3-3.00 3-3.01 3-3.02	+8.0 -3.4	39.3 80.3
Salinas Valley	3-4.00	-4.4	59.6
Carmel Valley	3-7.00	-2.3	18.6
West Santa Cruz Terrace	3-26.00	No measurements in 1963	30.8
	Region 3 Averages: 2/	-3.7	60,5

1/ + indicates rise in water level. - indicates decline in water level.

2/ Region Averages - <u>{ (basin average x basin area)</u>

basin areas

 $\underline{3}$ / Central Coastal Area Averages - $\frac{\leq (region average \times region area)}{\leq region areas}$

TABLE C-2 DESCRIPTION OF SELECTED WELLS

SC CBD	EN BEC
SNI OBC	BEG
DATA AVAILABLE	NATER WATER ANAL. PROD. REC.
HL	IN E OEb ME
	n ME
SNIK	1994 1994 1994
AGENCY WELL	NUMBER
STATE	WELL

0
(md
C
Ū.
æ
_
¥.
⊢.
AST
≪.
0
ŭ.
-
II.
는.
84
F.
ğ
-

z

	1-14-00	5000 1 35 51	5000 1 12 51	1-15-00	5000 1 62 51	5000 7 46 51	5000 2 190	1-16.00	5000 7 52	5000 2 44	5000 1 135	1-17+00	5000 2 180 50	5000 1 40	1 5000 1 20 50	5000 1 30	5000 2 36	5000 1 334	1-16.00	1-16.01	5000 7 120	5000 1 250	9050 7 193
MUNIT CONSIME REGION	POTTER VALLEY	I7N/IIW-18J01 M	17N/11W-32J01 M	UKIAH VALLEY	ISN/IZW-08L01 M	ISM/I2W-21M01 M	15N/12W-35M01 M	HOPLAND VALLEY	13N/11W-18E01 M	M IO461-MII/NEI	13N/11W-20G01 M	ALEXANDER VALLEY	10N/09W-18801 M	10N/09W-26L02 M	10N/09W-33C01 M 33801	M 10480-W01/W11	11N/10W-17P02 M	11N/10W-19F02 M	SANTA ROSA VALLEY	SANTA ROSA AREA	6N/08W-07P02 M	6N/08W-13R01 M	M 10890-720/ N2

080 090 SNI	038 038
080	BEC
DATA AILABLE	.0089 9800.
53	
01	BITAW
AV	901
133	J NI
HI.	130
רר	ME
11	na Ane
¥1	.¥0
SNIAT	2066
ADN	204
AON	304
AGENCY WELL	NUMBER
STATE	WELL

	50	49		50	51	53	54		58	51
1-18.01	167	89	1-18.02	110	4.4	53	285	1-98.00	120	47
	-	0		-	1	~	0		e	1
	5050 1	5000 0		5000 1	5000 1	5000 2	5000 0		5000 3	5000 1
AREA	Σ	x	AREA	Σ	I	x	Σ	RIVER VALLEY	M 7D01	Σ
SANTA ROSA AREA	7N/09W-35D02 M	BN/09W-36N01 M	HEALDSBURG AREA	8N/09W-03P01 M	8N/09W-22L01 M	9N/09W-28N01 M	100/10M-35001 M	LOWER RUSSIAN RIVER VALLEY	7N/IOW-D6N01 M	7N/11W-14E01 M

		2-03-00	9 33 48	1 40 49	2 70 48	0 60 49	2 120 49	2 220 49	1 282 18	2-06.00	1 58	1 81 2 58	1 131 58	1 40 58	2-09.00	2-09-01	1 85 50	9 80 49	4 160 58	2 180 48	0 145 50	2 49	0 97 57	9 60 50	
AGENCY NUMBER RELL BARA BARA SUPPERTING		LD VALLEY	M 5109	8109 S109	M 5109	5000	M 5109	M 5000	M 5109		M 5050	M 5050	M 5050	M 5050	LEY	SOUTH ALAMEDA COUNTY UPR AQUIFER	M 5100	M 5100	M 5401	M 5100	M 5401	M 5100	M 5401	5100	
STATE RECORD RECORD RECL NUMBER		SUISUN-FAIRFIELD VALLEY	5N/01W-07E01	5N/01W-28P01	5N/02W-17D02	5N/02W-27J02	5N/02W-29R01	5N/02M-30101	5N/03W-26F02	YGNACIO VALLEY	IN/01W-07K01	IN/02W-IIN01	2N/02W-27R01	2M/02W-36E01	SANTA CLARA VALLEY		35/02W-08R05 1	35/03W-24002	45/01W-18601	45/01W-22P05	45/01W-29C04 1	45/02W-24002	55/01W-04F01	55/01W-09001 M	
RECORD			90	53	9.6	50	49			50	49	4.9	-	64	4	4		50	46	51		20	8	18	90
PADE ANAL		2-01.00	225	158	92	428	78	2-02.00	2-02.01	59 1	250 1	1 886	232	25	129	184 1	2-02•02	70	150 1	100	2-03.00	39	37	67	
PROO PARTER PROO PROO LOG	SAM FRANCISCO BAY REGIOM	2~01.00	5050 1 225	5000 9 158	5000 1 92	5000 0 428	5050 2 78	2-02.00	2-02.01				5000 0 232		5101 2 129		2-02.02	5000 1 70		5000 2 100	2-03-00		5109 0 37	5109 1 67	8108 0 38

TABLE C-2 DESCRIPTION OF SELECTED WELLS

DATA AVAILABLE 0 400	106 MATER MALL PROD. REC. REC. REC. BEG D28
רר	0Eb ME
35 רר	SN 3AA
SNIA	1904 19902 19902
AGENCY WELL	NUMBER
STATE	WELL

	59	50	40	50	58	49	49		36	51	36	30	58	36	30	30	36	36	36	58	36	57	31
2-09.01					2		1	2-09.02		2				6					6		6		
2-	601	218	511	475	224	241	297	2=	525	560	295	250	425		500	480	400	235	_	806 1		525	400
AQUIFER	5100 2	5050 0	5100 7	5100 2	5401 7	5401 0	5100 2		2400 0	2400 2	2400 0	2400 7	5000 2	2400 2	2400 1	2400 2	2400 7	2400	2400 3	5000 3	2400 2	2400 3	2400
SOUTH ALAMEDA COUNTY LWR AQUIFER								NORTH SANTA CLARA COUNTY	59	342A	127	84		5	30	20	1804	274	120		148	403	304
AMED	W	M S	M	W I	M S	W	X.	NTA	Σ	π	x	W	I W	M	x	W II	Ξ	W	₩ N	¥٤ ان	X N	π	I
SOUTH AL	25/03W-36R01	35/02W-19A02	35/03W-24J01	45/02W-02001	45/02W-35R02	45/02W-36K01	55/01W-09M01	NORTH SA	65/01E-07E01	65/01E-21R01	65/01E-23P02	65/01E-30M01	65/01W-23E01	65/02W-16R01	65/02W-25C01	65/02W-35C01	75/01E-01K01	75/01E-08L01	75/01E-09D02	75/01E-16C05	75/01E-31A02	75/02E-07P01	75/02E-17H01

9.01		NORTH SANTA CLARA COUNTY		2-09.02	
	59	75/01W-35C01 M 117	2400 3	438	36
	50	75/02W-03001 M 23A	2400 2	800	36
	49	75/02W-04801 M 13	2400 2	450	36
	50	75/02W-22A01 M 37	2400 2	620	36
2	58	85/01E-07H02 M 166A	2400	350	54
	49	85/01E-13H01 M 257	2400 7	110	36
1	49	85/02E-20F03 M 297	2400		40
9.02		85/02E-22D01 M 233	2400 7		36
	36	85/01W-15801 M 129	2400	64	36
2	51	95/02E-01J01 M 238B	2400 7	135	36
	36	95/02E-01M01 M 279	2400	114	37
	30	LIVERMORE VALLEY		2-10.00	
	58	25/02E-25M01 M	5100		4.8
	36	25/01W-26C01 M	\$100 2	360	48
	30	35/01E-11H01 M	5100 7	303	49
	30	35/02E-02R01 M	5100 2	437 1	48
	36	35/02E-10H01 M	5100 2	376	4 .8
	36	HALF MOON BAY TERRACE		2-22.00	
	36	55/05W-20L01 M	5050 0	6.9	53
	58	55/05W-29M01 M	5050 2	82	53
	36	65/05W-08B01 M	5050 2	85	53
	\$7				

			UES	DESCRIPTION	5	שברבהובה שבררה	3		-	F
STATE WELL NUMBER	AGENCY WELL NUMBER	AGENCY SUPPLYING DATA WELL USE	10 FEET 05 PTH WELL	AVAILABLE AVAILABLE WATER ANALL BROD	ENOS BECOBO BECINZ BECOBO BECO BECO L	STATE WELL NUMBER	AGENCY WELL NUMBER	MELL MELL DATA SUPPLYING AGENCY		50N3 860030 50103 81030 860030
						CENTRAL	CENTRAL COASTAL REGION			
SAN GREGORIO VALLEY	LEY		2-2	2-24.00		SOQUEL VALLEY			3-01.00	
75/05W-13E01 M		5050 0	45		58	115/01W-09L01 M		5050 0		48
75/05W-15C01 M		5050 2	85		58	115/01W-15H01 M		5050 0		84
75/05W-15E01 M		5050 7			53				3-02.00	
75/05W-15E02 M		5050 1			53	125/01E-24601 M		5050 2	200	47
75/05W-15H02 M		5050 1			60	125/02E-16J01 M		5050 2		47
PESCADERO VALLEY			2-2	2-26.00		125/02E-31K01 M		5050 2	219	47
85/05W-09H01 M		5050 2			53	125/02E-31K01 M		5100 2	219	47
85/05W-11M01 M		5050 1	36		53	135/02E-05B01 M		5050 0	225	58
						GILROY-HOLLISTER VALLEY	VALLEY		3-03-00	
						SOUTH SANTA	SOUTH SANTA CLARA COUNTY		3-03.01	
						95/03E-27C02 M	374	2400 7	300	6 4
						95/03E-29801 M		5050 0	170	4.6
						105/03E-34L01 M		5050 7	1	48
						10S/04E-18G02 M		5050 7	184	4 B
						105/04E-35E01 M		5050 2	447	4 19
						115/03E-01B01 M		5400 2		57
						SAN BENITO COUNTY	OUNTY		3-03.02	
						115/05E-13D01 M		5050 2	125	2 37
						125/04E-20C01 M		5101 2	736 1	49
						125/05E-33A01 M		5050 2	150	24
						135/05E-11001 M		5101 0	44	24

TABLE C-2 DESCRIPTION OF SELECTED WELLS

080 080 5N	BEC BEC BEC
DATA	LOG MATER MAL. PROD. REC.
HL	I OG DEb MEI
3	SN 3AA
	1994US 1994US
AGENEY WELL	NUMBER
STATE	WELL

PASO RUBLES	245/10Ĕ-11C01 M	245/11E-25N01 M	245/11E-33R01 M	24S/11E-35J01 M	245/12E-17N01 M	245/15E-33C01 M	255/11E~35G01 M	255/12E-17J01 M	255/12E-17R01 M	255/12E-26K01 M	255/13E-11E01 M	255/16E-17L01 M	255/16E-30M01 M	265/12E-04N01 M	265/12E-26E01 M	265/12E-35M01 M	265/13E-10D01 M	265/13E-34B01 M	265/14E~16L01 M	265/14E-35D01 M	265/15E-02B01 M	265/15E-28002 M	265/15E-29N01 M
			31	16	31	31	31	31		31	31		16		31	\$		31	16	16	31	31	
	3-04+00	3-04.01		176	196 1		279 1		3-04.01	500 1	513 1	3-04.02	299	3-04.04	288 1	320	3-04+05	245	372				
			2100 2	2100 2	2100 7	2100 2	2100 2	2100 1		2100 2	2100 2		2100 2		2100 2	2100 2		2100 2	2100 2	2100 2	2100 2	2100 2	
	SALINAS VALLEY	PRESSURE AREA 180 FOOT AQUIFER	14S/02E~03C01 M 28 001	145/02E-15L01 M 2C 025A	15S/02E-01001 M 2D 023	15S/03E-16M01 M 3D 040	15S/04E-33A01 M 4D 056	165/04E-11001 M 4E 030D	PRESSURE AREA 400 FOOT AQUIFER	135/02E-31001 M 18 011A	145/03E-18J01 M 2C 119	EAST SIDE AREA	16S/05E-17R01 M 5E 026	ARROYO SECO CONE	185/06E-15M01 M 76 029	195/06E-11C01 M 7H 036	UPPER VALLEY AREA	195/07E-10P01 M 8H 031	205/08E-05R01 M 91 004	215/09E-06K01 M 10J 001	215/10E-32N01 M 11K 002	225/10E-16K01 M 12K 003	

3141	EN SEC
DATA AVAILABLE	LOG MATER MALL PROO. REC. REC.
HL	IN E DEb ME
	na 3MA
SNIK	39A 199U2 190
AGENCY WELL	NUMBER
STATE	WELL

3-04.06	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100
PASO RUBLES	245/10E-11C01 M	245/11E-25N01 M	24S/11E-33R01 M	24S/11E-35J01 M	245/12E-17N01 M	24S/15E-33C01 M	255/11E~35G01 M	255/12E-17J01 M	25S/12E-17R01 M	255/12E-26K01 M	255/13E-11E01 M	255/16E-17L01 M	255/16E-30M01 M	265/12E-04N01 M	26S/12E-26E01 M	265/12E-35M01 M	265/13E-10D01 M	265/13E-34B01 M	265/14E-16L01 M	265/14E-35D01 M	265/15E-02B01 M	265/15E-28Q02 M

5100

975/196-21M01 M

OF SELECTED WELLS	STATE STATE STATE STATE STATE SCENCY MALE NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER																						
DESCRIPTION OF SE		3-04.06																		3-07+00	60 52	3-26.00	54
	METT METT SEBUCA VICA VICA VICA VICA VICA VICA VICA VI		5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100		5100 7	TERRACE	5050 2
	STATE WELL NUMBER	PASO ROBLES	275/13E-24N01 M	275/13E-32B01 M	275/15E-10R02 M	275/15E-13A01 M	275/16E-21E02 M	285/12E-10G01 M	285/12E-10R02 M	285/12E-13N01 M	285/12E-14601 M	285/13E-04K01 M	285/13E-04K02 M	285/14E-07E01 M	285/16E-23M01 M	295/13E-05F03 M	295/13E-05K02 M	295/13E-06A01 M	295/13E-19H01 M	CARMEL VALLEY	165/01E-25B01 M	WEST SANTA CRUZ TERR	115/02W-22K01 M

1												
	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
	NOR	RTH COASTAL REGION	REGION				NOR	NORTH COASTAL REGION	EGION			
۹.	POTTER VALLEY			1-14.00			UKIAH VALLEY			1-15.00		
1	M IOL81-WII/NYI	955*0	7-09-63	• 5 • 6	954 • 5 954 • 4	5000	15N/12W-21M01 M CONT.	590.0	10-22-63	٩		5000
			9-17-63	6	954.7		15N/12W-35M01 M	600.0	7-09-63			5000
			11-20-63	4 °	955.4				8-13-63 9-16-63	5° • •	594 • 6 594 • 2	
			12-19-63	• 6	955°9				10-22-63			
			1-15-64		954.1				11-19-63	4°6	595.1	
			3-17-64						1-15-64	7.4	592.6	
			4-14-64 5-12-54	• [063 0				2-25-64	5.3	594°7	
			6-16-64	1 (f) 1 1	954.7				40-11-04	1 O	594.0	
	M 101 CC-M111 M21	0 300	00 F	, ,		000			5-12-64	6•9	593.1	
-	W TOCZC-MTT/NI	0.000	8-19-63	1 • Y	893. I 892. 2	0005			6-16-64	6•6	593.4	
			9-17-63	2.6	892.4		HOPLAND VALLEY			1-16.00		
			10-23-63	1.8	893 . 2							
			12-19-63	4 ° C	894°6 803.4		I3N/IIW-IBEOI M	490.0	7-09-63	12.3	477.7	5000
			1-15-64	1.5	893.5				9-16-63	12.2	477.8	
			2-25-64	2 • 2	892.8				10-22-63	12.0	478.0	
			3-17-64	2.0	893°0				11-19-63	10.8	479°2	
			4-13-64	3.1	891.9				12-19-63	10.7	479.3	
			6-16-64	4 • 1 • 1	890.9				2-25-64	11.0	479.0	
:									3-17-64	10.9	479.1	
D	UKIAH VALLET			1-15.00					4 - 14 - 64 5 - 12 - 54	0 t		
1	15N/12W-08L01 M	665.0	7-09-63	21.6	643.4	5000			6-16-64	12.6*	477.4	
			8-13-03	24.5	042004		13N/11W-19P01 M	488.0	7-09-63	12.6	475.4	0003
			10-22-63	25.4	639.6				8-12-63	15.5	472.5	
			11-19-63	13.8	651.2				9-16-63	17.7	470.3	
			12-19-63	20.6	644°4				10-22-63	17.1	470°9	
			1-15-64	20.8	644.2				11-19-63	10.8	477.2	
			2-17-64	12 0	04/00				12-19-63	11.3	476.7	
			4-14-64	20.7	644.3				2-25-64	6*6	478.1	
			5-12-64	21.8	643.2				3-17-64	9.7	478.3	
			6-16-64	22.8	642.2				4-14-64	10.4	477.6	
-	15N/12W-21M01 M	0 003	2-00-6	•					5-12-64	11.4	476.6	
4	LI 70117 #31 /0/	0.000	8-13-63	7.2	582.8	000 4			0-10-04	13.9	1 . 4 / 4	
			9-17-63	10.0	580.0		13N/11W-20G01 M	515.0	7-09-63	6.1	508.9	5 0 0 0
									8-17-43	7.0	507-1	

AGENCY SUPPLYING DATA			5000		2000		5 000	
WATER SURFACE ELEVATION IN FEET			173.5 174.0 173.9 177.0 177.0 171.6 171.6 292.4	293.0 294.0 297.2 295.0 293.6 293.6 293.6 292.2 292.2 292.2 292.3	281°4 281°9 283°3	281.1 283.0 283.7 283.2 282.6 282.6 281.5	341.9 341.9 335.8 342.9 342.3 8	342•7 342•0 342•2 341•7 340•7 339•2
GRD SUR TO WATER SUR IN FEET		1-17+00	6.5 6.5 6.1 7.9 8.4 8.4 1 2.6 1 2.6 1 2.6	12.0 11.0 7.8 11.1 11.1 10.0 11.4 11.4 12.8	10.6 10.1 8.7	10.9 9.0 8.8 9.4 10.5	4.1 8.3 10.2 3.7 3.7	
DATE	61 ON		1-15-64 3-17-64 3-17-64 5-12-64 6-16-64 6-16-64 7-09-63 8-12-63 8-12-63	10-22-63 11-19-63 12-19-64 1-15-64 2-25-64 3-17-64 4-14-64 5-12-64 5-12-64	7-09-63 8-12-63 9-16-63 10-22-63 11-19-63	12-19-63 1-15-64 2-25-64 3-17-64 4-14-64 5-12-64 5-12-64	7-09-63 8-12-63 9-16-63 10-22-63 11-19-63	1-15-64 2-25-64 3-17-64 4-14-64 5-12-64 5-12-64
GROUND SURFACE ELEVATION IN FEET	NORTH COASTAL REGION		180•0 305•0		292.0		346°0	
STATE WELL NUMBER	NON	ALEXANDER VALLEY	10N/09W-33C01 M CONT. 11N/10W-08P01 M		11N/10W-17P02 M		11N/10W-19F02 M	
AGENCY SUPPLYING DATA			5 0 0 0	5000		2000		5000
WATER SURFACE ELEVATION IN FEET			503.1 510.0 510.0 510.5 510.6 510.6 510.6 510.50	210.2 210.5 212.3 212.3	212.0 213.1 212.9 212.9 212.0 211.1 210.4	197.1 192.8 190.9 189.4 196.3 201.4	202.5 202.5 202.7 201.7 200.8 194.2	171.8 170.8 172.8 172.2 171.7 174.5 174.5
GRD SUR TO WATER SUR IN FEET		1-16.00	111 • • • • • • • • • • • • • • • • • •	1-17.00 6 19.8 19.5 17.7	18.0 16.9 17.1 18.0 18.9 19.6	12.02 112.02 15.02 15.05	2°5 2°5 2°3 3°3 10°8 10°8	ດດດາວ •••• ທີ່ດີ ເມັນເປັນ
DATE	GION		9-16-63 10-22-63 11-19-63 1-19-64 1-15-64 2-25-64 3-17-64 4-14-64 5-12-64 6-16-64	7-09-63 8-12-63 9-16-63 10-22-63 11-19-63 12-19-63	1-15-64 2-25-64 3-17-64 4-14-64 5-12-64 5-16-64	7-09-63 8-12-63 9-16-63 10-22-63 11-19-63 12-19-63	1-15-64 2-25-64 3-17-64 4-12-64 5-12-64 6-16-64	7-09-63 8-12-63 9-16-63 10-22-63 11-18-63 12-19-63
GROUND SURFACE ELEVATION IN FEET	H COASTAL REGION		515.0	230°0		205.0		180.0
STATE WELL NUMBER	NORTH	HOPLAND VALLEY	13N/11W-20G01 M Cont.	ALEXANDER VALLEY 10N/09W-18B01 M		10N/09W-26L02 M		10N/09W-33C01 M

GROLIND WATER I EVELS AT WELLS

Г

AGENCY SUPPLYING DATA			5000		5000									5000									0005									5000	
WATER SURFACE ELEVATION IN FEET			80.5		71.0	74°6 69°7			70.0	68.0	60.4	71.2	3 8 7 1	0 93	A .00			46.0	41.7	42.2		2.466	0.47	70.6	75.0	75.6	75.3	75.7	75.4	74.9	74.6	138.4	137.1
GRO. SUR TO WATER SUR IN FEET		1-18.01	9 ° 5	1-18.02	6.0	2.4 7.3	0		7.0	9*0*	16.6	5.8 8.8	2		•			21.0	25.3	24.8		31.6	14.1	19.4	15.0	13.6	14.7	14.3	14.6	15.1	10.4	3.6	4.9
DATE	EGION		6-16-64		7-09-63	8-12-63 9-16-63	10-22-63	11-18-63 12-19-63	1-14-64	2-25-64	4-14-64	5-12-64		7-09-63	9-16-63	10-22-63	11-18-63	1-14-64	2-25-64	3-17-64	5-12-64	6-16-04	8-12-63	9-16-63	10-22-63	11-18-63 12-19-63	1-14-64	2-25-64	4-14-64	5-12-64	6-16-64	7-09-63	8-12-63
GROUND SURFACE ELEVATION IN FEET	NORTH COASTAL REGION	REA	0*06	REA	77.0									67.0									0.06									142.0	
STATE WELL NUMBER	Ŭ	SANTA ROSA AREA	8N/09W-36N01 M	CONT. HEALOSBURG AREA	8N/09W-03P01 M									8N/09W-22L01 M									W TONDZ-MAD/NA									ION/IOW-35G01 M	
AGENCY SUPPLYING DÀTA				5 000								5000									E O E O	0.00	2	5050	5000	***							
WATER SURFACE ELEVATION IN FEET				75°9 65°6	71.0	71.9	1.1.1	79.2	77.0	77.2	0.61		96°9	94.3	95+2	97.7	98.8	99°5	99 . 7	91.0	263.4			103.0	86.8	87.0	81°4 79°8	80.0	81.6	81.°5 82.9	82.6	82.2 81.8	
GRD SUR TO WATER SUR IN FEET		1-18.00	1-18.01	19•1 29•4	24•0 H	23.1	18.1	1548	18.0	17.8	2007		18.1 	20.7	19.8	17.3	16.2	15.5	15.3	# II	11.6	-		32.0	3.2	0.0	10.2	10.0	4°0	7.1	7.4	7.8 8.2	
DATE	REGION			7-09-63 8-12-63	9-16-63 10-22-63	11-18-63	1-14-64	2-25-64	4-14-64	5-12-64		7-09-63	8-12-63 9-16-63	10-22-63	11-18-63	1-14-64	2-25-64	3-16-64	4-13-64	6-16-64	3-24-64	3-23-64		3-23-64	7-09-63	8-12-63	10-22-63	11-18-63	12-19-63	2-25-64	3-17-64	4-14-64 5-12-64	
GROUND SURFACE ELEVATION IN FEET	NORTH COASTAL REGION		EA	95°0								115.0									275.0	85.0		0.461	0.06								
	č.	×	A AR	x								x									M LOS	M TOI	1		M 101								
STATE WELL NUMBER	v	SANTA ROSA VALLEY	SANTA ROSA AREA	6N/08W-07P02 M								6N/08W-13R01 M									7N/07W-06R01 M	7N/08W-31C01	74/0000 25002		8N/09W-36N01								

ר
WELLS
AT
LS LS
LEVELS
WATER
GROUND
5

AGENCY SUPPLYING	DATA							
WATER SURFACE ELEVATION	IN FEET							
GRD SUR TO WATER	SUR IN FEET							
DATE								
GROUND SURFACE	ELEVATION IN FEET							
STATE WELL	NUMBER							
AGENCY	SUPPLYING	 		2000		0000	2000	
E B C	ELEVATION			135.7 135.8 137.8 137.8 138.8 138.8 139.2 137.9 137.9		44400040000000 4440000404000000 44000404000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
GRD SUR SURF	TO WATER SUR IN FEET		1-18.02	00100000000000000000000000000000000000	1-98.00	20.9 20.6 20.6 20.6 19.6 17.6 19.6 19.6 19.6 21.6 21.6 19.6 21.6 1.6		
	DATE	EGI ON		9-16-63 10-22-63 11-18-63 12-19-63 1-14-64 2-25-64 4-14-64 4-14-64 4-14-64 5-12-64 6-16-64		7-09-63 8-12-63 9-16-63 10-22-63 10-22-63 10-22-63 11-18-63 12-19-63 12-19-63 2-12-64 4-14-64 4-14-64 4-14-64 4-16-64 4-16-64	7-09-63 8-112-63 8-112-63 10-122-63 11-18-63 12-19-03 12-19-03 12-19-04 8-117-64 6-117-64 6-117-64 6-16-64	
GROUND	SURFACE ELEVATION IN FEET	TH COASTAL REGION	EA	142.0	ER VALLEY	2 5 • 0	25 * 0	
	STATE WELL NUMBER	NORTH	HEALDSBURG AREA	LON/JOWT-SSOOL M	LOWER RUSSIAN RIVER	7N/10W-06N01 M	7N/11W-14E01 M	

AGENCY SUPPLYING DATA				5 000	5000	5000 5000
WATER SURFACE ELEVATION IN FEET				\$0\$00040044 0000040044 000000404040	59.8 57.2 57.2 56.9 56.9 58.6 58.6 58.6 58.6 51.1 1.1	145.0 144.7 144.7 144.7 144.2
GRD SUR TO WATER SUR IN FEET		2-02.00	2-02.01	80004400400 •••••••• ••••••••• ••••••••• •••••• ••••	7.2 9.8 112.5 9.9 112.5 112.5 9.8 8 8 9.9 115.6	10.0. 10.0. 11.0.0. 11.0.0.8 11.
DATE	AY REGION			7-08-63 8-12-63 9-16-63 10-21-63 11-18-63 11-18-63 12-20-63 12-20-63 12-20-63 12-20-64 8-13-64 8-13-64 6-15-64 6-15-64	7-08-63 8-13-63 8-13-63 9-17-63 10-21-63 11-19-63 11-19-63 12-20-63 12-20-63 12-20-63 12-20-63 12-20-63 7-11-64 8-13-64 8-13-64	4-06-64 7-08-63 8-13-63 8-13-63 8-13-63 11-13-64 1-13-64 4-13-64 4-13-64 4-13-64 4-13-64 4-15-64 4-15-64
GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION			13.0	6 7 . 0	155.0 155.0
STATE WELL NUMBER	SAN	NAPA-SONOMA VALLEY	NAPA VALLEY	M IOMII-W40/NS	6N/04W-17A01 M	M 20000-09001 M
AGENCY SUPPLYING DATA			5050	2 000	0000	5000
WATER SURFACE ELEVATION IN FEET			1.5		8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	31.9 31.9 29.82 29.84 29.84 29.84 29.8 38.3 38.3 27.5
GRD SUR TO WATER SUR IN FEET		2-01.00	• 5	00000000000000000000000000000000000000	а 	21.7 23.64 23.64 23.64 23.62 23.62 23.62 23.68 26.0 26.0 26.0 26.0
DATE	AY REGION		3-23-64	7-09-63 8-12-63 8-12-63 10-22-63 11-12-63 12-19-63 12-19-63 12-19-64 2-25-64 3-16-64 5-113-64 5-115-64	7-08-63 8-12-63 9-12-63 10-22-63 11-18-63 12-19-63 12-19-63 12-19-64 2-13-64 3-16-64 3-16-64 5-11-64	7-08-63 8-12-63 9-12-65 9-11-65 9-11-65 11-18-65 11-18-65 12-12-65 7-12-64 6-11-66 6-11-66 6-16-64 8-13-66
GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION		2.0	41°0	65.0	53.6 18.8
STATE WELL NUMBER	SAN	PETALUMA VALLEY	3N/06W-01001 M	5N/07W-20802 M	W TOHI2-MLO/NS	5N/07W-26R01 M 5N/07W-35K01 M

											_										~							
AGENCY SUPPLYING DATA			5109	5109	5109	5109	5109	5109		5109	5000								5109		5 000							
WATER SURFACE ELEVATION IN FEET			18•5 18•6	2•1 3•4	29•0 31•6	14•2 10•8	101.7 103.2				3•0 7	6*0	1.0	9•2	11.7	14.9	15.2	10.4	5005	36.1	44.7		42.0	41.4	41.5	41.6	41°I	
GRD SUR TO WATER SUR IN FEET		2-03.00	16.5 16.4	4 % • 0 • 0	8 • 0 5 • 4	9.8 13.2	13•3 11•8	a	0	¥t ⊡	21.0	23.1	23.0	14.8	12.3	9.1	8.8	2.6 13.6	12.7	6.6	20.2	20.4	23.0				23.0	
OATE	AY REGION		10-11-63 3-16-64	10-15-63 3-16-64	10-15-63 3-16-64	10-16-63 3-16-64	10-16-63 3-16-64	10-16-63	3-16-64	10-16-63 3-17-64	7-08-63	8-16-63	10-21-63	12-20-63	1-13-64	3-16-64	4-13-64	5-11-64 6-15-64	10-16-63	3-16-64	54-00-2	8-12-63	9-16-63	10-21-63	11-18-63	12-20-63	1-13-64	1
GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION	VALLEY	35.0	7.0	37.0	24°0	115.0	15.0		101.0	24.0								0 77	0 • 0 • 0	(a)	0.00						
STATE WELL NUMBER	SA	SUISUN-FAIRFIELO VALLEY	4N/02W-06A01 M	4N/02W-09A01 M	M 10010-ME0/N4	5N/01E-36A01 M	5N/01W-07E01 M	M [0482-M[0/N5		5N/02W-17002 M	5N/02W-27J02 M									5N/02W-29K01 M		W TOCOS-MZO/NG						
AGENCY SUPPLYING DATA			2000						2000				_			5050	0000	200										
WATER SURFACE ELEVATION IN FEET			286+2	285•0 283•4 282•6	284.2 286.6 285.8	287.5 286.8 286.8	285.0		66•2 64•7	63•2 64•5	67.1	71.2	68•8 68•4		65•6	4.1		0 4 4	0	4.6	5.7	7.7	7.02	7.2	6•5 2	5.9		
GRD SUR TO WATER SUR IN FEET		2-02+01	3.8	5°0 4°6 4°6	0040- 0040-	× 9 0 0 4 9 0 0 0	2*0	2-02.02	18.8 20.3	21.8 20.5 1	17.9	13.8	16•2 16-6		19.4	6•9		10.6	12.0	11.5	10.3	8.3	8.8	8.8	9*5	10.1		
DATE	AY REGION		7-08-63	8-13-63 9-17-63 10-21-63	11-19-63 12-20-63 1-13-64	2-24-04 3-16-64 4-13-64	6-15-64		7-08-63	9-16-63 10-22-63 11-00-63	12-19-63	2-24-64	3-24-64	5-00-64	6-16-64	3-24-64		8-12-63	10-22-63	11-18-63	1-14-64	2-24-64	3-16-64	4-13-64	5-11-64	6-16-64		
GROUND SURFACE ELEVATION IN FEET	FRANCISCO BAY REGION		290.0					7	85.0							11.0		10.01										
STATE WELL NUMBER	SAN	NAPA VALLEY	W 10001-M90/N8					SONOMA VALLEY	5N/05W-17C01 M							5N/05W-28N01 M		W 10062-MG0/NG										
	_								~-																			

MARGINAL Dark of the parameter is	TO WATR JUN NFEET Survey In FEET Santa CLARA VAL SANTA CLARA VAL SANT		GROUND			WATER		-	GROUND			WATED		
CISCO BAY REGION SAM FRANCISCO BAY REGION Concord Sam Francisco BAY REGION 2-03-00 2-03-00 SAMTA CLARA VALLEY 2-09-00 2-09-00 5-01-00 2-01-00 SAMTA CLARA VALLEY 2-09-00 3100 35/024-0805 M 2-09-00 3100 <td< td=""><td>CISCO BAY REGION 2-03.00 5-0 3-16-64 23:2 41:87 5000 SOUTH ALAM 4-13-64 23:2 41:87 5000 SOUTH ALAM 5-13-64 23:2 41:87 5000 SOUTH ALAM 5-13-64 19:5 41:87 5000 SOUTH ALAM 5-13-64 19:5 41:87 5000 SOUTH ALAM 3-0 10-17-63 41:87 5000 35/03W-24002 M 2-06.000 T-18-63 10:8 77.2 75:88 5050 4/5 45/01W-18601 M 2-06.000 T-18-63 10:8 77.2 75:88 5050 4/5 45/01W-22P05 M 3-0 T-18-64 9:7 75:8 5050 4/5 45/01W-22P05 M 3-0 T-18-64 9:7 75:8 5050 4/5 45/01W-22P05 M 3-17-64 9:7 75:8 5050 4/5 45/01W-22P05 M 3-0 9-23-63 10:8 77.2 75:8 5050 4/5 45/01W-22P05 M 3-17-64 9:7 75:8 5050 4/5 45/01W-22P05 M 3-17-64 9:7 75:8 5050 4/5 45/01W-22P05 M 3-17-64 10:8 77.2 75:8 5050 4/5 45/01W-22P05 M 3-17-64 2:8 11:2 7 3-17-64 2:8 11:2 7 3-11-64 2:8 11:2 7 3-11-64 2:8 11:2 7 3-11-76 2:8 11:2 7 3-11-76 2:8 11:2 7 3-11-76 2:8 11:2 7 3-11-76 2:8 11:2 7 3</td><td></td><td>SURFACE ELEVATION IN FEET</td><td>DATE</td><td>GRD SUR TO WATER SUR IN FEET</td><td>SURFACE ELEVATION IN FEET</td><td>AGENCY SUPPLYING DATA</td><td>STATE WELL NUMBER</td><td>SURFACE ELEVATION IN FEET</td><td>DATE</td><td>GRD. SUR TO WATER SUR IN FEET</td><td>WALEN SURFACE ELEVATION IN FEET</td><td>AGENCY SURPLYING DATA</td></td<>	CISCO BAY REGION 2-03.00 5-0 3-16-64 23:2 41:87 5000 SOUTH ALAM 4-13-64 23:2 41:87 5000 SOUTH ALAM 5-13-64 23:2 41:87 5000 SOUTH ALAM 5-13-64 19:5 41:87 5000 SOUTH ALAM 5-13-64 19:5 41:87 5000 SOUTH ALAM 3-0 10-17-63 41:87 5000 35/03W-24002 M 2-06.000 T-18-63 10:8 77.2 75:88 5050 4/5 45/01W-18601 M 2-06.000 T-18-63 10:8 77.2 75:88 5050 4/5 45/01W-22P05 M 3-0 T-18-64 9:7 75:8 5050 4/5 45/01W-22P05 M 3-0 T-18-64 9:7 75:8 5050 4/5 45/01W-22P05 M 3-17-64 9:7 75:8 5050 4/5 45/01W-22P05 M 3-0 9-23-63 10:8 77.2 75:8 5050 4/5 45/01W-22P05 M 3-17-64 9:7 75:8 5050 4/5 45/01W-22P05 M 3-17-64 9:7 75:8 5050 4/5 45/01W-22P05 M 3-17-64 10:8 77.2 75:8 5050 4/5 45/01W-22P05 M 3-17-64 2:8 11:2 7 3-17-64 2:8 11:2 7 3-11-64 2:8 11:2 7 3-11-64 2:8 11:2 7 3-11-76 2:8 11:2 7 3-11-76 2:8 11:2 7 3-11-76 2:8 11:2 7 3-11-76 2:8 11:2 7 3		SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	SURFACE ELEVATION IN FEET	DATE	GRD. SUR TO WATER SUR IN FEET	WALEN SURFACE ELEVATION IN FEET	AGENCY SURPLYING DATA	
CIGCO BAY RECION SAM FAMCISCO BAY RECION 2-03-00 2-09-00 5-00-00 5-00-00 3-00 300 5-00-00 300	CISCO BAY REGION 2-03.00 2-03.00 2-03.00 2-03.00 2-03.00 3-16-64 23.2 41.7 5.0 3-16-64 23.2 41.7 5.00 3-16-64 23.2 41.7 5.000 3-16-64 23.2 41.7 5.000 3-10-17-63 10.2 2-06.00 3-10-17-63 10.2 72.8 9-22-63 10.2 72.8 9-22-63 10.2 72.8 9-22-63 10.2 72.8 9-22-63 10.7 72.8 9-22-6 9-22-6 10.2 72.8 9-22-6 9-22-6 10.2 72.8 9-22-6 9-22-6 10.2 72.8 9-22-6 9-22-6 10.2 72.8 9-22-6 9-22-6 10.7 72.8 9-22-6 9-22-6 10.7 72.8 9-22-6 9-22-6 10.7 72.8 9-22-6 9-22-6 10.7 72.8 9-22-6 9-22-6 10.7 72.8 9-22-6 9-22-6 10.7 72.8 9-22-6 9-22-6 10.7 72.8 9-22-6 9-22-6 10.7 72.8 9-22-6 9-22-6 10.7 72.8 9-22-6 9-22-6 10.7 72.8 9-22-6 9-22-6 10.7 72.8 9-22-6 9-22-6 10.7 72.8 9-22-6 9 9-22-6 10.7 72.8 9 9-22-6 9 9-2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9													
2-03:00 SAMTA CLARA VALLEY 2-09:00 5:0 $2-11-64$ 23.3 41.7 2000 SOUTH ALMEEA COUNTY UPR ADULFR 2-09:00 5:11-64 20.3 41.7 5000 SOUTH ALMEEA COUNTY UPR ADULFR 2-09:01 5:11-64 20.3 41.7 5000 SOUTH ALMEEA COUNTY UPR ADULFR 2-09:01 5:11-64 20.3 41.7 10.0 $10.24-002$ 41.7 41.7 41.7 41.7 41.7 $10.21-03$ $42.014-18601$ $41.20-04$ 41.7 <th colspa="</td"><td>2-03.00 2-03.00 SANTA 5.0 3-16-64 23.2 41.8 5000 5-11-64 23.2 41.8 5000 35/0 5-11-64 23.2 41.8 5000 35/0 5-11-64 29.2 41.8 5000 35/0 5-11-64 19.5 45.0 35/0 35/0 5-11-64 19.5 45/0 35/0 5-19-64 10.2 7.2 75.8 5050 3.0 7-18-63 10.2 72.2 45/0 9-23-63 10.2 72.2 73.5 5050 10-21-64 9.0 72.2 73.5 45/0 9-23-63 10.2 72.2 73.5 45/0 110-12-64 9.0 72.2 73.5 45/0 110-12-64 9.0 72.2 5050 45/0 110-12-64 9.7 73.2 5050 45/0 9.0 9.17-64 10.6 73.2 5050 9.17-64 9.7 73.2 5050 45/0 9.17-64 10.8 73.2 5050 45/0 9.17-64 10.8 10.7 12.2 55/0 9.17-64 2.3</td><td>-</td><td>RANCISCO B</td><td>AY REGION</td><td></td><td></td><td></td><td>SAN</td><td>FRANCISCO B</td><td>AY REGION</td><td></td><td></td><td></td></th>	<td>2-03.00 2-03.00 SANTA 5.0 3-16-64 23.2 41.8 5000 5-11-64 23.2 41.8 5000 35/0 5-11-64 23.2 41.8 5000 35/0 5-11-64 29.2 41.8 5000 35/0 5-11-64 19.5 45.0 35/0 35/0 5-11-64 19.5 45/0 35/0 5-19-64 10.2 7.2 75.8 5050 3.0 7-18-63 10.2 72.2 45/0 9-23-63 10.2 72.2 73.5 5050 10-21-64 9.0 72.2 73.5 45/0 9-23-63 10.2 72.2 73.5 45/0 110-12-64 9.0 72.2 73.5 45/0 110-12-64 9.0 72.2 5050 45/0 110-12-64 9.7 73.2 5050 45/0 9.0 9.17-64 10.6 73.2 5050 9.17-64 9.7 73.2 5050 45/0 9.17-64 10.8 73.2 5050 45/0 9.17-64 10.8 10.7 12.2 55/0 9.17-64 2.3</td> <td>-</td> <td>RANCISCO B</td> <td>AY REGION</td> <td></td> <td></td> <td></td> <td>SAN</td> <td>FRANCISCO B</td> <td>AY REGION</td> <td></td> <td></td> <td></td>	2-03.00 2-03.00 SANTA 5.0 3-16-64 23.2 41.8 5000 5-11-64 23.2 41.8 5000 35/0 5-11-64 23.2 41.8 5000 35/0 5-11-64 29.2 41.8 5000 35/0 5-11-64 19.5 45.0 35/0 35/0 5-11-64 19.5 45/0 35/0 5-19-64 10.2 7.2 75.8 5050 3.0 7-18-63 10.2 72.2 45/0 9-23-63 10.2 72.2 73.5 5050 10-21-64 9.0 72.2 73.5 45/0 9-23-63 10.2 72.2 73.5 45/0 110-12-64 9.0 72.2 73.5 45/0 110-12-64 9.0 72.2 5050 45/0 110-12-64 9.7 73.2 5050 45/0 9.0 9.17-64 10.6 73.2 5050 9.17-64 9.7 73.2 5050 45/0 9.17-64 10.8 73.2 5050 45/0 9.17-64 10.8 10.7 12.2 55/0 9.17-64 2.3	-	RANCISCO B	AY REGION				SAN	FRANCISCO B	AY REGION			
P-16-66 Z-3.3 41.7 5000 SOUTH ALMEDA COUNTY UPR ADUTER Z-09.01 31.0 7-11-66 20.2 44.0 9-00-69 39.0 31.0 30.0 7-11-66 20.2 44.0 9-00-69 30.0 31.0 30.0 10-17-66 10.2 7.2 44.0 9-00-69 30.0 30.0 7-11-66 10.2 7.2 75.8 5030 45/01W-18G01 M 41.0 7-19-69 32.7 7 41.17 7-18-63 10.2 72.2 75.8 5030 45/01W-22005 M 41.0 7-19-69 32.7 7 41.17 11-19-69 10.2 72.2 77.8 9.2 7 41.17 11-19-69 10.2 72.8 5030 45/01W-22005 M 40.0 70.9 10.2 72.9 10.2 11-19-69 10.2 72.8 9.2 74.9 74.9 10.2 74.9 10.2 10.2 10.2 10.2 10.2 10.2	3-16-64 23.3 41.7 5000 5-11-65 19.5 41.8 5000 5-11-65 19.5 45.6 5-11-65 19.5 45.6 5-11-65 1 5109 3-18-64 1 2-06.00 7.2 2-06.00 7.2 2-06.00 7.2 7.2 75.8 9-23-63 10.2 10-17-63 10.2 7.2 75.8 9-23-63 10.2 11-9-63 10.2 72.2 9-23-63 10-17-64 9.6 72.2 72.2 9-23-63 10.2 72.2 72.2 9-23-64 9.0 9-19-64 9.6 9-19-64 9.7 9-19-64 9.7 9-19-64 1 9-19-64 1 9-19-64 1 9-19-64 1 9-19-64 1 9-19-64 1 9-19-64 1 9-19-64 1 9-19-64 1 9-19-64 1 9-19-64 1 9-19-64 9.7 9-19-64 <	AL.	LEY		2-03+00			SANTA CLARA VALLEY			2-09.00			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5-11-0-6 20.2 44.6 35/02W-08R05 10-17-03 19.5 45.5 35/02W-08R05 3-18-04 19.5 45.01W-18601 2-004.00 1 2-004.00 35/02W-08R05 3-18-05 1 2-004.00 35/02W-08R05 2-18-05 1 2-004.00 45/01W-18601 2-18-05 10.2 72.8 5050 45/01W-18601 10-17-05 10.2 72.8 72.8 5050 11-29-05 10.2 72.8 72.8 5050 11-21-05 10.2 72.8 72.8 5050 11-21-05 9.2 72.8 72.8 5050 2-11-05 9.2 72.8 72.8 5050 2-11-05 9.2 72.8 72.8 5050 2-11-05 9.2 72.8 72.8 5050 2-11-05 9.2 9.0 72.8 5050 2-11-05 9.2 9.0 45/01W-22P05 2-11-05 9.2 9.0 45/01W-22P05 2-11-05 9.2 9.0 45/01W-22P05 2-11-05 9.2 9.0 45/01W-22P05 2-11-05 10.8 9.0 45/01W-22P05		65°0	3-16-64	23•3 23 - 3	7.14	2000	SOUTH ALAMEDA	COUNTY UPR	AQUIFER	2-09.01			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10-17-63 5109 35/03W-24002 3-18-64 - - - 2-06.00 - - - 7-18-63 7.2 75.8 5050 45/01W-18601 7-32-63 10.2 72.2 72.2 5050 10-21-63 9.2 72.2 72.2 5050 10-21-63 9.2 72.2 72.2 9-23-63 10.1 72.2 72.2 10-21-63 9.2 72.2 73.4 9-17-64 9.0 72.2 73.4 9-17-64 9.0 72.2 73.4 9-17-64 9.0 72.2 73.4 9-17-64 9.0 72.2 73.4 9-17-64 9.0 72.2 45/01W-22P05 9-17-64 9.0 72.2 45/01W-22P05 9-17-64 10.6 73.1 73.3 9-17-64 10.6 45/01W-22P05 9-11-10-53 2.0 10.6 9-11-10-53 2.0 10.6 9-11-10-53 2.0 10.6 9-11-10-54 2.3 10.6 9-11-10-53 2.0 10.6 9-11-10-54 2.3 10.6 9-111-10-53			5~11-64 6-15-64	20•2 20•2 19•5	8 • • • • •	·		64°0	9-00-63 4-00-64	33°0 34°0	31•0 30•0	5100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2-06.00 45/01W-18601 7-18-63 7.2 75.8 5050 45/01W-18601 8-24-63 10.2 72.9 5050 45/01W-18601 10-21-63 10.1 72.9 5050 45/01W-18601 10-21-63 10.1 72.9 5050 45/01W-18601 11-19-03 9.5 73.8 5050 45/01W-22P03 2-17-64 9.0 73.1 73.8 5050 2-17-64 9.7 73.8 73.8 5050 2-17-64 9.7 73.3 73.8 5050 2-17-64 10.5 73.8 5050 45/01W-22P03 2-17-64 10.5 73.8 5050 45/01W-22P03 2-17-64 10.5 73.8 5050 45/01W-22P03 9-23-03 15.2 47.8 5050 45/01W-22P03 9-23-03 15.2 47.8 5050 45/02W-24002 9-23-03 15.2 47.8 5050 45/02W-24002 9-23-03 5.3 10.7 45/02W-24002 9-23-03 5.3 10.7 45/02W-24002 9-23-03 5.3 10.6 45/02W-24002 9-23-03 5.3 10.6 45/02W-24002 </td <td></td> <td>111.0</td> <td>10-17-63 3-18-64</td> <td></td> <td></td> <td>5109</td> <td></td> <td>8.0</td> <td>9-00-63 4-00-64</td> <td>8•5 7•0</td> <td></td> <td>5100</td>		111.0	10-17-63 3-18-64			5109		8.0	9-00-63 4-00-64	8•5 7•0		5100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7-18-65 7.2 75.8 5050 9-23-65 10.2 72.2 9-23-65 10.2 72.2 9-23-65 10.1 72.2 10-21-95 9.2 73.5 11-21-65 9.2 73.5 12-17-65 9.2 73.1 12-17-65 9.2 73.2 12-17-65 9.2 73.2 12-17-65 9.2 73.2 12-17-65 9.0 74.0 2-17-64 9.9 73.1 9-17-64 9.9 73.1 9-17-64 9.7 73.3 9-17-64 9.7 73.3 9-17-64 10.5 50.0 9-23-63 13.2 45.01W-22905 9-23-63 4.3 10.7 9-23-63 4.3 10.7 9-23-63 4.3 45.00W-22905 9-23-63 4.3 10.7 9-23-63 4.3 45.00W-22905 9-23-63 4.3 10.6 9-23-63 4.3 45.00W-22905 9-23-63 4.3 10.6 9-23-63 4.3 45.00W-22905 9-23-64 12.6 45.00W-22905 9-217-64 2.8				2-06.00				41.0	7-19-63	82 • 7		1045	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10-21-05 10-25-05 10-21-05 10-21-05 10-21-05 10-21-05 10-21-05 10-21-05 10-25-05 10-21-05 10-21-05 10-21-05 10-21-05 10-25-05 10-21-05 10-25-05 10-21-05 10-25-05 10-21-05 10-25-05 10-25-05 10-25-05-05 10-25-05 10-25-05 10		83°0	7-18-63 8-24-63 0-23-63	7•2 10•2	75.8	5050			9-00-63 9-00-63 10-25-63				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12-17-64 9.2 73.8 73.8 12-07-64 0.0 72.4 0 2-17-64 0.0 72.4 0 2-17-64 0.0 72.4 0 2-17-64 0.0 72.4 0 2-17-64 0.0 72.4 0 2-17-64 0.0 72.4 0 42.00 72.4 0.7 72.5 9-19-64 0.5 72.5 45.01W-22P05 9-23-63 15.2 47.8 5050 9-23-63 15.2 47.8 5050 9-23-63 4.4 10.6 45.01W-22P05 9-23-63 4.4 10.6 45.01W-22P064 9-23-63 4.4 10.6 45.00W-24002 9-23-63 4.4 10.6 45.00W-24002 9-23-63 4.4 10.6 45.00W-24002 9-23-63 4.4 10.6 45.00W-24002 10-21-63 2.8 12.6 12.6 11-19-63 2.9 12.6 55/01W-04F01 12-17-64 2.3 12.6 55/01W-04F01 11-19-64 2.3 12.6 55/01W-04F01 11-19-64 2.3 12.6 55/01W-04F01			10-21-63	10.1	72.9				12-20-63	81.3 78.3			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2-17-64 9.0 72.2 3-17-64 0.0 72.4 3-17-64 0.0 72.4 3-17-64 0.0 72.5 5-19-64 0.5 72.5 5-19-64 0.5 72.5 5-19-64 0.5 72.5 5-19-64 0.5 72.5 5-19-64 0.5 72.5 5-19-64 0.5 73.3 5-19-64 0.5 73.5 5-19-64 10.5 45/01W-22904 9-23-63 4.5 45/01W-29004 9-23-63 4.3 10.6 9-23-63 4.3 10.6 9-23-63 4.3 10.6 9-23-63 4.3 10.6 9-23-63 4.3 10.6 9-23-63 2.9 12.6 10-11-19-63 2.9 12.6 11-19-63 2.9 12.6 11-19-63 2.9 12.6 11-19-64 2.3 12.6 11-19-64 2.3 12.6 11-19-64 2.3 12.6 11-19-64 2.3 12.6 11-19-64 2.3 12.6 11-19-64 2.3 9.7 5-119-64			12-17-63	9.2	73.8				2-28-64	74.3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-17-64 9.9 73.1 3-17-64 9.7 73.3 5-18-64 10.5 73.3 5-18-64 10.5 73.3 5-18-64 10.5 73.3 5-18-64 10.5 73.3 5-19-64 10.5 73.3 5-19-64 10.7 73.3 5-19-64 12.0 45/01W-22P05 9-23-93 15.2 47.8 9-23-93 54.2 8.8 9-23-63 54.2 8.8 9-23-63 54.3 8.8 9-23-63 54.3 8.8 9-23-63 54.3 10.7 9-23-63 54.3 10.7 9-23-63 5.9 10.7 9-23-63 5.9 10.7 9-23-63 5.9 10.7 9-23-63 2.9 12.6 10-19-63 2.9 12.6 11-19-64 2.8 12.6 5-117-64 2.8 12.6 5-117-64 5.3 9.7 5-117-64 5.3 9.7 5-117-64 5.3 9.7 5-117-64 5.3 9.7 5-117-64 5.3 9.7			1-20-64	9.0 10.8	72.2				3-27-64	74.3			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5-20-64 10.5 72.5 5-19-64 0.7 73.3 5-19-64 1 45/01W-22P05 9-23-63 15.2 47.8 5050 9-23-63 15.2 47.8 5050 9-23-63 15.2 47.8 5050 9-23-63 5.2 8.8 5050 7-18-63 5.4 10.6 45/01W-29C04 9-23-93 5.3 11.6 45/01W-29C04 9-23-93 5.3 11.6 45/02W-24002 10-21-63 5.8 12.6 12.2 11-19-63 2.8 12.6 12.6 12-17-64 2.8 12.6 55/01W-04F01 12-17-64 2.8 12.6 55/01W-04F01 12-17-64 2.8 12.6 55/01W-04F01 12-17-64 2.8 12.8 55/01W-04F01 12-17-64 5.9 5.050 55/01W-04F01 <td< td=""><td></td><td></td><td>3-17-64</td><td>6.6</td><td>73.1</td><td></td><td></td><td></td><td>5-15-64</td><td>78.5</td><td></td><td></td></td<>			3-17-64	6.6	73.1				5-15-64	78.5			
0-19-64 H 45/01W-22P05 M 80.0 9-00-63 46.2 31.8 3-17-64 12.3 47.8 50.0 45/01W-22P05 M 80.0 9-00-64 46.2 31.8 3-17-64 12.9 50.1 5050 45/01W-22P04 M 55.0 9-20-64 81.6 21.6 7-18-63 6.2 8.8 5050 45/01W-29C04 M 55.0 9-20-64 83.6 7 23.6 7-18-63 6.2 8.8 5050 45/01W-29C04 M 55.0 9-20-64 83.6 7 23.6 7-19-63 10.7 4.3 10.7 45/02W-24002 M 33.4 9-00-64 47.0 9-23-63 4.0 10.6 33.4 9-00-64 47.0 7 33.4 9-217-63 2.3 11.5 112.5 12.2 12.8 23.6 9.2 11-19-64 2.6 12.8 12.8 12.8 12.8 9.2 9.2 9.2 11-19-64 2.8 12.8 12.8 12.8 12.8 9.2 9.2 9.2 11-19-64 2.8 12.8 12.8 12.8 12.8 9.2 9.2 9.2 11-19-64 2.8 12.8	6-19-64 н 45/01W-22P05 9-23-03 15.2 47.8 5050 9-23-03 15.2 47.8 5050 9-23-03 15.2 47.8 5050 9-23-03 5.2 50.1 45/01W-229C04 9-23-03 5.2 8.6 5050 45/01W-29C04 9-23-03 5.4 8.6 5050 45/01W-29C04 9-23-03 4.3 10.7 45/02W-24002 11-19-03 2.8 10.7 45/02W-24002 11-19-03 2.8 12.6 55/01W-04F01 12-17-03 2.9 12.1 55/01W-04F01 11-19-03 2.8 12.2 55/01W-04F01 12-17-04 2.3 12.4 55/01W-04F01 11-19-05 2.9 12.4 55/01W-04F01 2-17-04 2.8 12.4 55/01W-04F01 3-17-04 2.3 12.4 55/01W-04F01 3-17-04 5.3 9.7 5050 3-17-04 5.3 9.7 5050			4-20-64	10.5 9.7	72.5 73.3				6-12-64	83.6			
9-23-63 15.2 47.8 5050 45/01W-29C04 M 55.0 9-20-64 33.6 7 3-17-64 12.9 50.1 5050 45/01W-29C04 M 55.0 9-20-64 33.6 7 21.6 7-18-63 6.2 8.8 5050 45/01W-29C04 M 55.0 9-20-64 33.6 7 23.6 7-18-63 6.2 8.8 5050 45/01W-29C04 M 55.0 9-20-64 33.6 7 23.6 9-25-63 4.0 10.6 9-20-64 83.6 7 7 33.4 9-27-63 5.5 111.5 45/02W-24002 M 33.4 9-00-64 H 33.6 7 33.3 111-19-63 2.8 12.2 12.81 55/01W-04F01 M 42.0 7-19-63 72.1 20.1 111-19-64 2.8 12.2 12.81 55/01W-04F01 M 42.0 7-19-63 72.1 20.2 111-19-64 2.8 12.81 12.81 55/01W-04F01 M 42.0 71.9 30.1 2717-64 2.8 12.81 12.81 55/01W-04F01 M 42.0 71.9 30.0 3-17-64 2.8 12.81 12.81 12.81 12.81 10.1	9-23-63 15.2 47.8 5050 3-17-64 12.9 50.1 45/01W-29C04 7-18-63 6.4 10.6 45/01W-29C04 8-24-63 4.3 10.7 45/02W-24002 10-23-63 4.3 10.7 45/02W-24002 11-19-63 2.8 10.7 45/02W-24002 11-19-63 2.9 12.1 55/01W-04F01 2-17-64 2.3 12.4 55/01W-04F01 2-17-64 2.8 12.4 55/01W-04F01 3-17-64 2.8 12.8 55/01W-04F01 3-17-64 3.9 9.7 5050			6-19-64	u				80.0	9-00-63	48.2	31.8	5100	
7-18-63 6.2 8.6 5050 45/01W-2904 M 55.0 9-20-63 92.0 7.0 8-24-63 4.3 10.6 5050 45/01W-2904 M 55.0 9-20-64 83.6 7 23.6 8-24-63 4.3 10.67 4.3 33.4 9-00-63 66.7 7 33.3 10-21-63 3.5 112.5 45/02W-24002 M 33.4 9-00-63 66.7 7 33.3 11-19-63 3.5 12.3 12.3 55/01W-04F01 M 42.00 7 33.4 12-17-64 2.5 12.3 55/01W-04F01 M 42.00 7 7 30.1 2-17-64 2.3 12.8 55/01W-04F01 M 42.00 7 7 30.2 2-17-64 2.3 12.8 55/01W-04F01 M 42.00 7 7 30.1 2-17-64 2.3 12.8 55/01W-04F01 M 42.00 7 7 30.2 2-17-64 2.3 12.8 55/01W-04F01 M 42.00 7 7 30.2 2-17-64 2.3 12.8 10.6 7 7 30.2 3-17-64 5.3 9 10-16 7 7 30.2	7-18-63 6.2 8.8 5050 45/01W-29C04 8-24-65 4.4 10.6 45/01W-29C04 9-22-65 4.3 10.7 45/02W-24002 10-21-65 4.3 10.7 45/02W-24002 11-19-63 2.8 11.5 45/01W-04F01 12-17-64 2.8 12.6 12.7 2-17-64 2.8 12.7 55/01W-04F01 3-17-64 2.8 12.7 55/01W-04F01 3-17-64 2.8 12.7 55/01W-04F01 3-17-64 2.8 12.7 55/01W-04F01 3-17-64 2.8 12.2 55/01W-04F01 3-17-64 2.8 12.2 55/01W-04F01 3-17-64 2.8 12.2 55/01W-04F01 3-17-64 2.8 12.2 55/01W-04F01 3-17-64 5.8 0.7 5050		63.0	9-23-63 3-17-64	15•2 12•9	47.8	5050			40-00-4	7 . 84	31.6		
9-24-63 4.4 10.6 45/02W-74002 M 33.4 9-00-63 66.7 - 33.3 10-21-63 3.5 11.5 55/01W-04F01 M 42.0 7-19-63 76.7 - 33.3 11-20-64 2.5 11.5 55/01W-04F01 M 42.0 7-19-63 76.7 - 39.4 12-17-65 2.9 12.5 55/01W-04F01 M 42.0 7-19-63 77.1 - 30.1 12-17-64 2.3 12.2 55/01W-04F01 M 42.0 7-19-63 77.1 - 30.1 2-17-64 2.3 12.4 9-20-63 77.2 90.2 3-17-64 2.3 12.2 9.7 9.7 9.0 90.1 3-17-64 5.3 9.7 10-18-63 77.2 90.2 5-18-64 5.3 9.7 12-24-64 70.9 28.6 5-19-64 5.3 9.7 12-24-64 70.9 28.6 5-19-64 5.3 9.7 12-24-64 70.9 28.6 5-19-64 5.3 9.7 12-24-64	8-24-63 4.4 10.6 45/02W-24002 9-23-63 3.3 10.7 45/02W-24002 10-21-63 3.5 11.6 55/01W-04F01 11-19-63 2.8 12.6 55/01W-04F01 12-17-64 2.5 12.6 55/01W-04F01 12-17-64 2.6 12.6 55/01W-04F01 12-17-64 2.6 12.6 55/01W-04F01 12-17-64 2.6 12.7 55/01W-04F01 12-17-64 2.6 12.7 55/01W-04F01 12-17-64 2.6 12.7 55/01W-04F01 12-17-64 2.6 12.7 55/01W-04F01 3-17-64 2.6 12.7 55/01W-04F01 3-17-64 5.3 0.7 5050 3-17-64 16.0 32.0 5050		15.0	7-18-63	6 •2	8.8	5050		55.0	9-20-63 3-20-64	92.0 83.6		5401	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10-7-2-0-3 3-3 10.0 45/02W-2402 10-7-2-5-3 3-3 11.0 45/02W-2402 11-19-6-3 2-8 12.6 55/01W-04F01 12-17-64 2-8 12.6 55/01W-04F01 2-17-64 2-8 12.6 55/01W-04F01 3-17-64 2-8 12.6 55/01W-04F01 5-18-64 2-8 12.6 56/01W-04F01 5-18-64 2-8 12.2 57/01W-04F01 5-18-64 5-8 12.2 57/01W-04F01 5-18-64 5-3 9.7 5050 5-17-64 16.0 32.0 5050			8-24-63	4.4	10.6				1				
11-19-63 2.8 12.2 12-17-63 2.8 12.2 12-17-63 2.9 12.1 2-17-64 2.5 12.6 2-17-64 2.5 12.7 2-17-64 2.6 12.4 2-17-64 2.6 12.7 2-17-64 2.6 12.4 2-17-64 2.6 12.4 2-17-64 2.6 12.4 2-17-64 2.6 12.4 12-18-64 4.4 10.6 5-18-64 4.4 10.6 5-19-64 5.3 9.7 5-19-64 5.3 9.7 3-17-64 10.6 2.20-63 5-19-64 70.6 2.8 3-17-64 10.6 2.8 3-17-64 10.0 32.0 5050 5050 5050 3-17-64 10.6 70.6 5-22-64 70.6 28.6 5-22-64 70.6 28.6 5-22-64 70.5 28.6 5-22-64 70.5 28.6	11-19-63 2.68 12.2 55/01W-04F01 12-27-64 2.9 12.6 55/01W-04F01 12-17-64 2.6 12.7 55/01W-04F01 2-17-64 2.6 12.7 55/01W-04F01 3-17-64 2.6 12.7 55/01W-04F01 3-17-64 2.6 12.2 55/01W-04F01 3-17-64 2.6 12.2 55/01W-04F01 3-17-64 16.0 32.0 5050			10-21-63	4 E 5 • E	10.7			33°4	9-00-63	66.7 ¤		5100	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12-17-63 2.9 12.1 55/01W-04F01 2-17-64 2.3 12.7 3-17-64 2.8 12.4 4-20-64 2.8 12.4 6-19-64 2.8 12.4 6-19-64 5.3 9.7 6-19-64 5.3 9.7 3-17-64 16.0 32.0 5050			11-19-63	2.8	12.2					I			
1-2-0+0 2.40 12.40 06.9 7 2-17-04 2.40 12.4 7 7 3-17-04 2.6 12.4 7 7 3-17-04 2.6 12.4 7 7 3-17-04 2.8 12.2 7 7 5-18-04 5.3 9.7 7 7 6-19-04 5.3 9.7 5 7 3-17-64 16.0 32.0 5050 9 3-17-64 16.0 32.0 5050 9	2-17-04 2-17-04 2-17-04 2-17-04 2-17-04 2-18-04 5-18-04 5-3 9-7 3-17-64 16.0 32.0			12-17-63	2°9	12.1			42.0	7-19-63	72.1		5401	
2-17-64 2.6 12.4 12-15-63 72.1 3-17-64 2.6 12.4 10-18-63 72.2 4-20-64 2.8 12.2 11-15-63 72.2 5-18-64 4.4 10.6 12-20-63 72.4 5-19-64 5.3 9.7 12-20-64 71.81 5-19-64 5.3 9.7 12-20-64 71.81 5-19-64 5.3 9.7 12-20-64 70.6 5-17-64 16.0 32.0 5050 5-22-64 70.6	2-17-06 2-17-06 4-20-04 2-8 12-2 6-19-04 5-3 9-17-04 16-0 32-0 3-17-04 16-0 32-0			1-20-64	2•5	12.5				8-23-63	69°6			
4-20-64 2.88 12.52 11-15-63 72.80 5-18-64 2.88 12.64 72.8 72.8 5-19-64 5.33 9.7 12-24-64 70.4 5-19-64 5.33 9.7 12-24-64 70.4 5-19-64 5.32.0 5050 32.40 5050 32.22-64 70.4	4-20-64 2.8 4-20-64 2.8 5-18-64 4.4 10.6 5-19-64 5.3 9.7 3-17-64 16.0 32.0			2-11-04	2.5	12.4				9-20-63	72.1			
5-18-04 4.4 10.6 72.2 72.2 6-19-04 5.3 9.7 71.1 71.2 6-19-04 5.3 9.7 71.2 6-19-04 5.3 9.7 71.2 9-17-04 16.0 32.0 5050 9-17-04 16.0 32.0 5050	5-18-64 4.4 10.6 6-19-64 5.3 9.7 3-17-64 16.0 32.0			4-20-64	2.8	12.2				69-91-01	72.0			
6-19-64 5,3 9,7 1-24-64 71.1 - 3-17-64 16,0 32,0 5050 5050 3-22-64 70.6 - 3-22-64 70.5 - 5-22-64 70.3 -	6-19-64 5.3 9.7 3-17-64 16.0 32.0			5-18-64	4.4	10.6				12-20-63	72.2			
3-17-64 16.0 32.0 5050 2-21-64 70.9 - 3-17-64 16.0 32.0 5050 2-22-64 70.6 - 4-24-64 70.5 - 5-22-64 70.3 -	3-17-64 16+0 32+0			6-19-64	5.3	9.7				1-24-64	71.1			
3-1/-0* 10*0 32*0 5050 32*0 5050 32*0 5050 3-20-64 70*6 - 4-24-64 70*5 - 5-22-64 70*3 -	3-11-64 10.0 32.0				:					2-21-64	70.9			
70.3 -			40.0	9-11-6	16.0	32+0	0505			3-20-64	70.6			
										5-22-64	70.3			

	AGENCY SUPPLYING DATA				5401		5100		2400									2400										2400									
	WATER SURFACE ELEVATION IN FEET				- 47.5 50.2	- 26*2	- 14.3		- 111.5	- 105.7	- 93.6			- 63•7 - 65•1		- 91.0	- 101.4	- 94.8	- 100+2				- 73.6		- 83.9	- 101.4		85.8	82.8	81.7	78.9	78.7	75.7	75.1	76.3		
	GRD. SUR TO WATER SUR IN FEET		2-09-01		71.5	83.5	89°3	2-09.02	127.3*	121.5	109.4	104.1	97.3	79.5 80.9	54.1	106.8	112.8	232.8	236.2	234.6	225.3	219.1	213.6			239				-			164.8				
	DATE	Y REGION	OUTEED	NOTE CA	3-20-64	5-22-64	9-00-63 4-00-64		7-24-63	8-22-63	9-23-63	11-21-63	12-19-63	1-22-64	3-19-64	4-17-64	5-21-64 6-18-64	59-52-2	8-21-63	10-21-63	11-20-63	12-17-63	1-17-64	3-18-64	4-16-64	5-28-64	6-17-64	7-22-63	8-19-63	9-19-63	10-18-63	11-18-63	12-17-63	2-19-64	3-18-64		
WELLS	GROUND SURFACE ELEVATION	SAN FRANCISCO BAY REGIOM		A COUNTY LANK	24.0		15.0	NORTH SANTA CLARA COUNTY	15.8									0.951	00001									240.5									
AT	STATE WELL NUMBER	SA		SOUTH ALAMEN	45/02W-36K01 M CONT•		W 10W60-M10/SS	NORTH SANTA	65/01E-07E01 M									M 10010 110101	65/UIE-ZIKUI M									6015-23002 M									
WATER LEVELS	AGENCY SUPPLYING DATA				5100		5100	2020									5100		0016		5401										5401						
GROUND W	WATER SURFACE ELEVATION IN FEET						- 127.0 - 118.5	9•1 6•2	8 ° 4	7.2	6.2	6 °8	6.6	10.0	* 40 • • •		- 66.6		- 63.7		- 67.5															6.04	- 42.4
GROI	GRD. SUR TO WATER SUR. IN FEET			2-09.01	۵	2-09.01	172.0* 153.5*	23.8	25.2	22.8	21.6	21.1	20.02	20.0	21.6		76.3		а 89.7		82.5	81°8	1	8		3 13	12				03.7	94.2				6.4.9	
	DATE		AT REGIUM	AGUIFER	4-00-64	AQUIFER	9-00-63 4-00-64	7	9-24-63	11-19-63	12-17-63	1-22-64	+9-21-2	4-21-64	5-18-64	+0-6T-0	9-00-63		9-00-63 4-07-64		7-19-63	8-23-63	10-00-63	11-00-63	12-00-63	2-00-64	3-00-64	4-00-4	5-00-64	6-00-64	7-10-62	8-23-63	9-20-63	10-18-63	11-15-63	1-24-64	2-21-64
	GROUND SURFACE ELEVATION IN FEET		SAN FRANCISCO BAY KEGLUN	COUNTY UPR	19•5	COUNTY LWR	45.0	30.0									11.0		26e0		15.0										40	0.0402					
	STATE WELL NUMBER		SAN	SOUTH ALAMEDA COUNTY UPR AQUIFER	55/01W-09001 M Cont.	SOUTH ALAMEDA COUNTY LWR AQUIFER	2S/03W-36R01 M	35/02W-19A02 M									35/03W-24J01 M		45/02W-02001 M		45/02W-35R02 M											45/02W-30KUI M					

GROUND WATER LEVELS AT WELLS

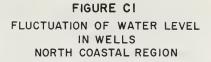
AGENCY SUPPLYING DATA			2400		2400		2400		2400	
WATER SURFACE ELEVATION IN FEET			- 76.8 - 68.4	1 8 8 9 9 9 9 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9	- 115.7 - 122.6 - 120.3 - 120.3			- 18.4 - 17.1 - 17.1 - 16.2 - 16.4 - 16.4	- 76.0 - 76.7 - 65.3 - 64.9 - 61.2	
GROUND SUR- FACE TO WATER SURFACE IN FEET		2-09.02	149.8 141.4 139.2	127.8 128.3 127.5 132.0* 144.5* 155.8* 149.7	255°8 252°7* 260°4 246°7*	231.2* 232.9* 241.7* 250.9* 250.9* 271.9*	199.5 198.7 201.8 200.6 198.8	197.44 196.1 195.2 195.4 195.4 195.4	164.0 164.7 153.3 152.9 149.2 139.5	132.9 128.2
DATE	AY REGION		9-25-63 10-25-63 11-23-63	12-23-63 1-24-64 2-25-64 4-29-64 4-29-64 5-25-64 64	7-29-63 8-26-63 9-26-63 10-28-63 11-28-63 12-26-63	1-27-66 3-30-66 5-23-66 5-23-66 5-25-66	7-19-63 8-19-63 9-19-63 9-19-63 10-18-63	12-16-63 1-15-64 3-17-64 4-15-64 5-19-64 5-19-64 6-15-64	7-24-63 8-27-63 9-26-63 10-28-63 11-27-63 12-27-63	1-29-64 2-27-64
GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION	CLARA COUNTY	73.0		140.1		179.0		88°0	
STATE WELL NUMBER	SA	NORTH SANTA CLARA COUNTY	65/02W-25C01 M CONT.		65/02W-35C01 M		75/01E-01K01 M		75/01E-08L01 M	
AGENCY SUPPLYING DATA			2400	2400		2000		2400		2400
WATER SURFACE ELEVATION IN FEET			71•3 64•6 72•2	- 110°1 - 100°4 - 100°4 - 796°7 - 71°7 - 71°7 - 55°4		- 141.3 - 110.2 - 137.8 - 109.2 - 83.3	- 62.3 - 95.3 - 110.0			- 83.9 - 80.7
GROUND SUR- FACE TO WATER SURFACE IN FEET		2-09 • 02	169.2 175.9 168.3	153°1 1453°1 139°7 114°7 105°1 105°1 25°5		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	83•3 83•3 116•3 131•0	142.0 135.0 135.6 125.6 125.5	119.44 1139.9 1132.8 134.1	156.9 153.7
DATE	AY REGION		4-16-64 5-19-64 6-16-64	7-25-63 8-22-63 9-23-63 9-23-63 10-23-63 110-23-63 11-21-63 12-19-63	2-24-64 3-26-64 4-20-64 5-21-64 6-19-64	7-15-63 8-12-63 9-10-63 10-08-63 11-06-63 12-06-63	1-04-04 2-07-64 4-29-64 5-00-64 5-22-64	7-30-63 8-26-63 9-26-63 10-29-63 11-26-63 11-26-63 12-26-63	2-26-64 3-30-64 5-25-64 5-25-64	7-26-63 8-22-63
GROUND SURFACE EL EVATION IN FEET	N FRANCISCO BAY REGION	CLARA COUNTY	240°5	0°64		21.0		48°7		73.0
STATE WELL NUMBER	SAN	NORTH SANTA CLARA COUNTY	65/01E-23P02 M CONT.	65/01E-30M01 M		65/01W-23E01 M		65/02W-16R01 M		65/02W-25C01 M

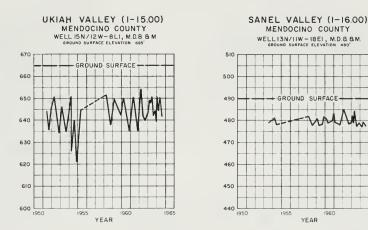
AGENCY SUPPLYING DATA			2400		2400		2400		2400
WATER SURFACE ELEVATION IN FEET				1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	252 252 252 252 252 252 252 252 252 252	252.0 253.6 253.6 252.7 251.8 251.8 251.8	44444444444444444444444444444444444444	44108 444108 444108 44108 44108	4 4 8 N 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GROUND SUR- FACE TO WATER SURFACE IN FEET		2-09+02		137.4 136.9 136.2 136.2 136.1 136.1 136.1	-	900 ° 4 900 ° 4 900 ° 4 900 ° 2 900 °	20.2 19.5 21.6 210.9 210.3 210.1		198.0 196.0 200.0 194.0 194.0 193.0
DATE	AY REGION		8-19-63 9-19-63 10-18-63 11-18-63	12-16-63 1-15-64 2-18-64 3-17-64 4-15-64 5-19-64 6-15-64	7+18-63 8-15-63 9-19-63 10-16-63 11-18-63	12-16-63 1-15-64 2-18-64 3-16-64 4-15-64 5-18-64 5-18-64	7 - 18 - 63 $8 - 15 - 63$ $9 - 18 - 63$ $9 - 18 - 63$ $10 - 16 - 63$ $11 - 15 - 63$ $12 - 13 - 64$ $1 - 14 - 64$	2-18-64 3-16-64 4-14-64 5-18-64 6-12-64	7-01-63 8-01-63 9-01-63 10-01-63 11-01-63 112-01-63 12-01-63 12-01-63
GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION	CLARA COUNTY	130.0		349° 0		462.0		202+0
STATE WELL NUMBER	SAL	NORTH SANTA CLARA COUNTY	75/02E-07P01 M CONT.		75/02E-17H01 M		75/02E-33C01 M		75/01W-35C01 M
AGENCY SUPPLYING DATA			2400	2400		2000	2 4 0 0	2	2400
WATER SURFACE ELEVATION IN FEET			39•9 53•4 61•0 68•2	81.1 82.6 93.6 90.6 63.6 63.6	66666666666666666666666666666666666666	121.6 121.6 124.9 126.4 88.9 82.9	64.7 64.7 69.0 55.5 108.9 10.8	1200 1120 23300 202 202 202 202 202 202	1.3.8 13.8 6.6 6.6 9.9 2.2 2.2 14.3
						- 121.6 - 121.6 - 124.9 - 126.4 - 88.9 - 88.9	-	111111	
		2-09.02				226*6 - 121*6 226*2 - 121*6 229*9 - 124*9 231*6 - 126*4 193*9 - 88*9 187*9 - 88*9			
GROUND SUR- FACE TO WATE SURFACE IN FEET	AY REGION	2-09-02	1 + 1 1		141.55 141.55 162.55 161.55 161.55		1690,7 174,0 174,0 160,5 213,9 162,4 1	163-66 1763-66 1744-66 153-8 153-8 157-7*	н н н на
GROUND SUR. FACE TO WATER SURFACE IN FEET	SAN FRANCISCO BAY REGION	NORTH SANTA CLARA COUNTY 2-09.02	127.9 - 141.4 - 149.0 - 156.2 -	177.0 178.5 1889.5 1889.5 1599.5 1599.5 1599.5 1599.5 1599.5	141.55 141.55 162.55 161.55 161.55	226.6 226.6 229.9 231.4 193.9 187.9	169.7	8-07-63 163-6 9-06-63 170-3 9-06-63 170-3 170-33 170-3 11-04-63 189-8 11-04-63 189-8 12-044 157-7*	152.9 137.88 145.0* 141.7 153.8 153.8 144.3

AGENCY SUPPLYING DATA			2400		2400		2400		2400
WATER SURFACE ELEVATION IN FEET			136.8 136.9 133.6 133.7 132.2	130.66 131.00 127.99 1123.91 113.3	152°7 154°5 160°1 159°0 164°9 164°7	164.5 164.61 160.2 157.8 159.8	177.2 180.6 184.5 186.0 186.7 186.7	187° 7 187° 7 185° 2 188° 9 188° 9 188° 9	227-6 229-7 229-5 229-8 229-8 229-3 228-0
GROUND SUR. FACE TO WATER SURFACE IN FEET		2-09.02	70°2 73°4 73°4 75°8	76.4 76.0 83.9 93.7	31.9 30.1 24.5 25.6 23.6 19.8 3	26.8 24.4 24.8 24.8 24.8	31.8 28.4 24.5 23.0 22.3 21.1 1	22.1 21.3 23.8 25.7 24.1 24.1	12.1 10.0 10.0 9.0 9.7 9.7 10.4
OATE	AY REGION		8-06-63 9-10-63 10-16-63 11-05-63 12-04-63 12-03-64	2-04-04 3-04-64 5-06-64 5-06-64 6-29-66	7-09-63 8-07-63 9-12-63 10-04-63 11-07-63 12-05-63 12-05-63	2 - 06 - 64 3 - 09 - 64 4 - 07 - 64 5 - 07 - 64	7-10-63 8-08-63 9-12-63 10-07-63 11-07-63 11-07-63	1 - 0 / - 64 2 - 0 7 - 64 8 - 0 7 - 64 5 - 0 7 - 64 6 - 04 - 64	7-10-63 8-08-63 9-12-63 10-07-63 11-07-63 12-06-63 12-06-63
GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION	CLARA COUNTY	207+0		184.6		209.0		239°7
STATE WELL NUMBER	SA	NORTH SANTA CLARA COUNTY	85/01E-07H02 M CONT.		85/01E-13H01 M		85/02E-20F03 M		as/02E-22D01 M
AGENCY SUPPLYING OATA			2400	2400		2400		2400	
WATER SURFACE ELEVATION IN FEET			16•0 13•0 7•0 - 14•0 - 28•0	- 146.3 - 146.3 - 151.3 - 157.3 - 142.3	- 118.3 - 118.3 - 116.3 - 126.3 - 133.3	288 298 298 298 298 298 298 298 298 298	225 25 25 25 25 25 25 25 25 25 25 25 25	324.1 322.5 321.0 320.0	322.00 317.0 310.1 316.7 317.5
GROUND SUR- FACE TO WATER SURFACE IN FEET		2-09+02	186.0 185.0 195.0 216.0 230.0	363.0 363.0 368.0 374.0 359.0	90 90 90 90 90 90 90 90 90 90 90 90 90 9	193.3 194.9 194.7 194.2* 194.2*	193.7* 193.7* 193.0* 194.2 197.3	п 15.9 17.5 19.0* 20.0	23°0* 23°0* 23°3* 22°5
DATE	AY REGION		2-03-64 3-02-64 4-02-64 5-01-64 5-01-64	7-31-63 8-02-63 9-01-63 10-01-63 10-30-63	12-01-05 1-02-64 2-01-64 3-02-64 4-02-64 5-03-64 5-03-64	7-30-63 8-28-63 9-26-63 10-29-63 11-26-63	12-24-64 1-28-64 3-30-64 4-24-64 5-26-64 5-26-64	7-30-63 8-28-63 9-27-63 10-29-63 11-26-63	1-28-64 2-26-64 3-31-64 4-27-64 5-26-64 6-26-64
GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION	NORTH SANTA CLARA COUNTY	202.0	216.7		218.0		340°0	
STATE WELL NUMBER	SA	NORTH SANTA	75/01W-35C01 M Cont.	75/02W-03001 M		75/02W-04B01 M		75/02W-22A01 M	

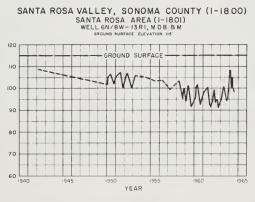
AGENCY SUPPLYING OATA			5100		5100	5100	5100	5100		5050		5050	5050		0 9 9
WATER SURFACE ELE /ATION IN FEET			544.6		323•7 349•7	235•7 249•9		451.5		59.5 58.7	588 1 588 1 599 2 599 2 599 2 594 9 594 9 595 9 505 9 50500 9 500 9 5000	14.9	54.1		00000000000000000000000000000000000000
CROUND SUR- FACE TO WATER SURFACE IN FEET		2-10.00	10.7	10.5	93•2 67•2	137.2 123.0		8•66	2-22.00	13•5 14•3	15°7 14°9 13°8 13°8 12°1 15°3 15°3	31.1	53°9	2-24.00	n 11.69 11.69 11.65 11.65 11.63 11.65 11.65 11.65 11.65 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6
DATE	AY REGION		9-00-63	* 0 - 0 - *	9-00-63 4-00-64	9-00-63 4-00-64	9-00-63 4-00-64	9-00-63 4-00-64		7-19-63 8-23-63	9-27-63 10-22-63 11-22-63 12-19-63 1-23-64 2-20-64 3-24-64	3-24-64	4-23-64		7-19-63 8-23-63 8-23-63 9-22-63 10-22-63 11-22-63 11-22-63 12-19-64 2-23-64 4-23-64 6-19-64 6-19-64
GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION		555°3		416.9	372.9	562.2	551°0	ACE	73.0		46.0	108.0	7	8 0 ° 0
STATE WELL NUMBER	SAN	LIVERMORE VALLEY	25/02E-25N01 M		2S/01W-26C01 M	3S/01E-11H01 M	35/02E-02R01 M	3S/02E-10H01 M	HALF MOON BAY TERRACE	55/05W-20L01 M		55/05W-29N01 M	65/05w-08B01 M	SAN GREGORIO VALLEY	75/05W-13E01 M
AGENCY SUPPLYING DATA			2400			2400					2400				2400
WATER SURFACE ELEVATION IN FEET			226.4	225.6	227•1 228•0 228•5	299.7	298.8 297.1 297.8	297.8 297.3	295.9	296•5 296•6	285.3 2865.5 2866.5 2846.5 282.9 282.9 282.9 282.9 582.9 582.9 582.9 582.9 582.9 582.9 582.9 582.9 593.9 582.9 593.0 593	281。0 279。5	278•6 277•7	6 • 9/ 7	266.8 267.1 267.1 265.9 265.9 264.4 264.4 264.4 264.4 264.4 264.4 264.4 264.9 264.9 264.9 264.9 264.9 264.9 259.5 264.9 259.5 264.9 259.5 264.5 264.5 264.5 264.5 264.5 264.5 264.5 264.5 264.5 264.5 264.5 264.5 264.5 264.5 264.5 265.5
GROUND SUR. FACE TO WATER SURFACE IN FEET		2-09-02	12.7	14.1	12•6 11•7 11•2	31.5	320 340 540 5	99 6 99 6 99 6 99 6	35°3	34.6	29°3 288°0 288°0 288°0 28°3 28°3 28°3 28°3 28°3 28°3 28°3 28°3	33.6	36.0 36.9	38•]	200 210 210 210 210 20 20 20 20 20 20 20 20 20 20 20 20 20
DATE	AY REGION		44-20-6	3-09-64	5-07-64 5-08-64	7-02-63	8-05-05 9-10-63 10-02-63	11-03-63 12-03-64 1-03-64	3-03-64	5-27-64 6-02-64	7-15-63 8-12-63 9-16-63 10-11-63 11-08-63 12-10-63 12-10-63	2-08-64	4-10-64 5-11-64	6-29-64	7-11-63 8-08-08-63 9-13-63 9-13-63 10-07-65 12-06-65 12-08-65 3-09-665 5-08-65 5-08-65 6-08-65 6-08-65 6-08-65 6-08-65 6-08-65 6-08-65 6-08-65 6-08-65 8-08-65 8-08-65 8-08-65 8-08-65 8-08-65 8-08-65 8-08-65 8-08-65 8-08-65 9-08-08-65 9-08-65 9-08-65 9-08-65 9-08-08-65 9-08-08-0
GROUND GROUND SURFACE ELEVATION IN FEET	N FRANCISCO BAY REGION	TI ARA COUNTY		23701		331.2					314°6				287.6
STATE WELL NUMBER	SAN	COUNTY CAMIN CLARA COUNTY	ALMAS FLIXON	85/02E-22D01 M	•	85/01W-15801 M					95/02E-01J01 M				95/02E-01M01 M

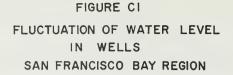
	AGENCY SUPPLYING DATA									
	WATER WATER SURFACE ELEVATION IN FEET									
	GROUND SUR. FACE TO WATER SURFACE IN FEET									
	DATE									
WELLS	GROUND SURFACE ELEVATION IN FEET									
GROUND WATER LEVELS AT WELLS	STATE WELL NUMBER									
TABL	AGENCY SUPPLYING DATA			5050	5050	0 \$ 0 \$	5050		5 0 2 0	5050
UND	WATER SURFACE ELEVATION IN FEET			67.6	69•2	00000000000000000000000000000000000000	23.8		1 1 1 1 1 1 1 1 1 1 1 1 1 1	34 e
GRO	GROUND SUR. FACE TD WATER SURFACE IN FEET		2-24.00	12.4	6.0	11111111 445 960 960 960 97 97 97 97 97 97 97 97 97 97 97 97 97	16.2	2-26.00	n 4444044444 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 • 4
	DATE	BAY REGION		3-24-64	3-24-64	7-19-63 8-23-63 8-23-63 10-22-63 11-22-63 11-22-63 11-22-63 11-22-63 12-19-64 3-19-64 8-23-64 6-19-64 6-19-64	3-24-64		7-19-63 8-23-63 9-23-65 9-23-65 10-22-63 11-29-66 12-139-66 12-139-66 12-139-66 12-139-66 12-23-66 1-23-66 1-23-66 2-23-166 8-121-66 8-121-66	3-24-64
	GROUND SURFACE EL EVATION IN FEET	SAN FRANCISCO BAY REGION	EΥ	80.0	75.2	90°0	40.0		20.0	45°0
	STATE WELL NUMBER	SA	SAN GREGORIO VALLEY	7S/05W-15C01 M	75/05W-15E01 M	75/05W-15E02 M	75/05W-15H02 M	PESCADERO VALLEY	85/054-09H01 M	W TOWIT-MSO/S8

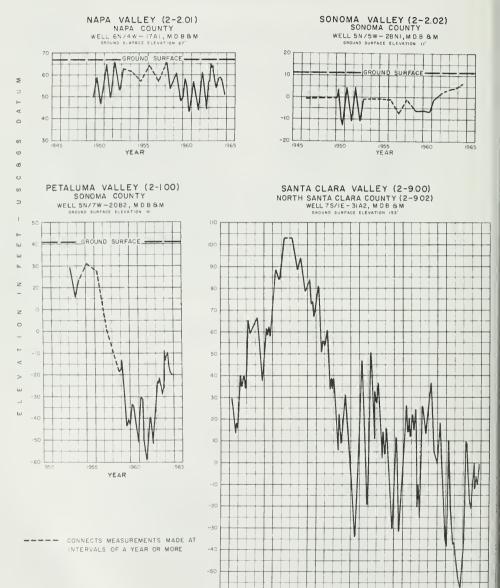

AGENCY SUPPLYING DATA			5050	5050 5100 5050	5050				2400		5050	5050
WATER WATER SURFACE ELEVATION IN FEET			- 6•7 - 0•2 - 1•7	1•6 3•5 0	6 6 6				260°1 258°6 259°6 266°9 266°9 266°9	276.8 278.1 277.7 273.7	266•3 384•6	241.4 241.5 241.1 240.9
GROUND SUR. FACE TO WATER SURFACE IN FEET		3-02.00	13.8* 20.7* 22.2	28.4 26.5 26.0	п 139.3	1374 8 1374 8 1374 8 1356 3 1356 4 1356 4	3-03-00	3-03.01	86 • 9 88 • 4 79 • 6 87 • 4 80 • 1 79 • 1	70.2 68.9 73.3	80.7 13.0	7 • 9 8 • 2 8 • 4
DATE	REGION		3-17-64 4-22-64 5-20-64 6-18-64	11-21-63 1-10-64 3-19-64	7-18-63 8-23-63 9-25-63	11-21-63 11-21-63 1-22-64 3-17-64 5-22-64 5-22-64			7-11-63 8-09-63 9-16-63 9-16-63 10-09-63 11-12-63 12-09-63 12-09-63	2-10-64 3-10-64 4-09-64 5-11-64	6-09-64 3-18-64	7-18-63 8-22-63 9-24-63 10-23-63
GROUND SURFACE ELEVATION IN FEET	CENTRAL COASTAL REGION		20•5	30.0	136.0		VALLEY	SOUTH SANTA CLARA COUNTY	347 <u>°</u> 0		397.6	249.3
STATE WELL NUMBER	CE	PAJARO VALLEY	125/02E-16J01 M CONT.	125/02E-31K01 M	135/02E-^5B01 M		GILROY-HOLLISTER VALLEY	SOUTH SANTA	95/03E-27C02 M		95/03E-29B01 M	105/03E-34L01 M
AGENCY SUPPLYING DATA			5050			5050		5050			5050	
WATER SURFACE ELEVATION IN FEET			57.1 66.9 65.9 67.1	67. 1 67. 2 64. 9 65. 8	66• 6 66• 3 66• 7	00000000000000000000000000000000000000			II 100000000000000000000000000000000000	- 6.7	- 2°] 4°2	8 8 4 6 8 8 4 9 9 9 1 9
GRDUND SUR- FACE TO WATER SURFACE IN FEET		3-01.00	67.1 57.3 58.3 57.1 56.9	57.1 57.0 59.3	57.6 57.9 57.5	0,000,000,000 0,000,000 0,000,000 0,000,000,00 0,000,000,000,000 0,000 0,000 0,00 0,0000	3-02-00				п 22.6* 16.3*	14.5* 12.6* 12.4* 12.0*
DATE	REGION		7-19-63 8-23-63 9-27-63 10-22-63 11-21-63	12-19-63 1-23-64 2-19-64 3-19-64	4-23-64 5-20-64 6-19-64	11-21-63 12-19-63 1-23-64 2-19-64 3-19-64 4-23-64 4-23-64		7-18-63	8-23-63 9-25-63 10-22-63 11-21-63 12-19-63 12-19-64 2-19-64 2-19-64	4-22-64 5-20-64 6-18-64	7-18-63 8-23-63 9-25-63 10-22-63	11-21-63 12-19-63 1-22-64 2-19-64 2-19-64
GROUND SURFACE ELEVATION IN FEET	CENTRAL COASTAL REGION		124.2			91.7		9 ° 4			c•02	
STATE WELL NUMBER	CE	SOQUEL VALLEY	115/01W-09L01 M			M IOH21-MISHOI M	PAJARO VALLEY	12S/01E-24G01 M			125/02E-16J01 M	
		v ,	-			-					~	


AGENCY SUPPLYING OATA			5050		5101			2100	2100		2100							2100	2100		2100
WATER SURFACE ELEVATION IN FEET			189.9 190.2 187.6 188.1 191.5 191.5	181.2 180.0	270.9			- 2.0	3 • 3			- 2.6	8.5	8° 5		2 • 9		11.8	40.1	37.3	59.8 60.3
GROUND SUR- FACE TO WATER SURFACE IN FEET		3-03.02	90 ° 1 90 ° 1 92 ° 4 98 ° 5 98 ° 5 90 ° 5 1	98.8 100.0	54.6	3-04 • 00	3-04.01	12.6 14.6	19.7			144 ° 6	п 33.5	33•5 ¤		8° CF		46 ° 2 46 ° 8	84.9	87.7	50.2 49.7
DATE	IL REGION		10-24-63 11-20-63 12-18-63 1-22-64 2-19-64 3-19-64 4-22-64	5-19-64	4-00-64		OUIFER	12-05-63 3-26-64	12-09-63	10-07-0	7-17-63 8-16-63	9-18-63 10-15-63	11-14-63	12-09-63	2-17-64	4-08-64 5-15-64	6-17-64	12-11-63 4-08-64	12-30-63	4-07-64	12-31-63
GROUND SURFACE ELEVATION IN FEET	CENTRAL COASTAL REGION	DUNTY	280°0		325°5		AREA 180 FOOT AGUIFER	10.6	23+0		42.0							58.0	125.0		110.0
STATE WELL NUMBER	CEI	SAN BENITO COUNTY	125/D5E-33A01 M CONT.		135/05E-11001 M	SALINAS VALLEY	PRESSURE ARE	145/02E-03C01 M	145/02E-15L01 M		155/02E-01001 M							15S/03E-16M01 M	155/04E-33A01 M		165/04E-11D01 M
AGENCY SUPPLYING DATA			5050	5050						5050	5400		5050							5101	5050
WATER SURFACE ELEVATION IN FEET			241.2 240.0 241.1 241.1 241.1 241.2 241.2 241.2	196.1		211.1	208.7 208.7 208.9	207.1 199.9	186.6	161.3			232.9	231.6	234.6	234.1	233。2 232。5	227.7	222.7	116.6	
GROUND SUR. FACE TO WATER SURFACE IN FEET		3-03.01	8000000 ********* 111000111	63.4 55.0			50.8 50.8	59°6	72.9	86.7	n	3-03.02	22.8	24.1	21-12	21.6	22°5 23°2	28•0 ¤	33•О п	36 • 3	
DATE	REGION		11-20-63 12-18-63 1-22-64 2-18-64 3-19-64 4-01-64 5-00-64	7-18-63 8-22-63	9-24-63	11-20-63	1-22-64	3-18-64 4-21-64 5-19-64	6-17-64	3-19-64	4-00-64		7-18-63 8-22-63	9-24-63	11~20-63	12-18-63	1-22-64 2-18-64	2-20-64	5-19-64 6-17-64	4-00-64	7-00-63
GROUND SURFACE ELEVATION IN FEET	CENTRAL COASTAL	CLARA COUNTY	249°3	259.5						248.0	227.0	YTNUC	255.7							152 . 9	280.0
STATE WELL NUMBER	CEI	SOUTH SANTA CL	105/03E-34L01 M Cont.	10S/04E-18G02 M						105/04E-35E01 M	115/03E-01B01 M	SAN BENITO COUNTY	115/05E-13001 M							125/04E-20C01 M	12S/05E-33A01 M

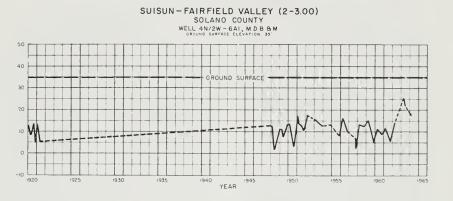
GROUND WATER LEVELS AT WELLS


AGENCY SUPPLYING OATA			5100	5100	5100	5100	5100	5100	5100	5100		5100								5050					
WATER SURFACE ELEVATION IN FEET			1134,8	1116.2	1136.0	1401.0	899.0	915.2	867.7	996.6			123.8	124.0	124.4	124.5	124.5	124.1		- 49.3 - 36.6					
GROUND SUR. FACE TO WATER SURFACE IM FEET		3-04.06	64°7	78.8	14。0	38.0	16.6	13.3	52.3	5°9	3-07.00	-	16.2	15.9	15.6	15.5	15.5	70°70	3-26.00	79.3 66.6					
OATE	- REGION		4-01-64	4-01-64	4-02-64	4-02-64	3-30-64	3-30-64	3-30-64	3-30-64		7-00-63	9-17-63 10-16-63	11-18-63	1-22-64	3-16-64	4-13-64 5-18-64	0-11-04		11-13-63 3-18-64					
GROUNO SURFACE ELEVATION IN FEET	CENTRAL COASTAL		1199.5	1195.0-	1150.0	1439.0	915.6	928.5	920.0	1002.5		140.0						00400	CRRACE	30.0					:
STATE WELL NUMBER	G	PASO ROBLES	285/13E-04K01 M	285/13E-04K02 M	285/14E-07E01 M	285/16E-23M01 M	295/13E-05F03 M	295/13E-05K02 M	295/13E-06A01 M	295/13E-19H01 M	CARMEL VALLEY	165/01E-25801 M						WEST CANTA COULS TEODAGE		TIS/UZW-ZZKUI M					•
-	 																							_	
AGENCY SUPPLYIN DATA			5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	£100
WATER SURFACE SURFACE ELEVATION IN FEET DATA			1123+6 5100	1102.0 5100	1146.1 5100	629+5 5100	644.6 5100	671.6 5100	782.44 5100	843•2 5100	944.8 5100	1015.4 5100	1084.4 5100	1028.4 5100	1034.4 5100	740.9 5100	1017.2 5100	1051.8 5100	1072.6 5100	1132.5 5100	1196.2 5100	811.3 5100	794.9 5100	840.7 5100	824.1 R100
		3-04 • 06																							1 5 874-1
WATER SURFACE ELEVATION IN FEET	REGION	3-04.06	1123.6	1102.0	1146.1	629 • 5	644 a 6	671.6	782.4	843+2	944.8	1015.4	1084.4	1028.4	1034.4	740.9	1017.2	1051.8	1072.6	1132.5	1196.2	811.3	794 • 9	840.7	424-1
GROUNO SUR- FACE TO WATER WATER SURFACE SURFACE ELEVATION IN FEET IN FEET	CENTRAL COASTAL REGION	3-04 • 06	60.4 1123.6	-31-64 62.5 1102.0	-31-64 71.9 1146.1	-30-64 45.0 629.5	194.4 644.6	-03-64 146.4 671.6	-03-64 16.6 782.4	161.8 843.2	-03-64 73.2 944.8	-02-64 119.1 1015.4	29.6 1084.4	83.0 1028.4	100.0 1034.4	6.6 740.9	12.8 1017.2	51.7 1051.8	57.4 1072.6	21.0 1132.5	56.8 1196.2	-03-64 12.7 811.3	10.1 794.9	9.6 840.7	1 5 874-1




----- CONNECTS MEASUREMENTS MADE AT INTERVALS OF A YEAR OR MORE.

1965


-88-

YEAR

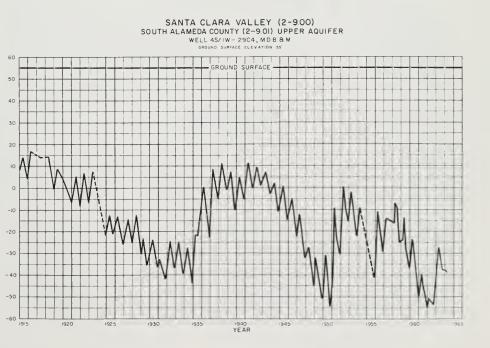
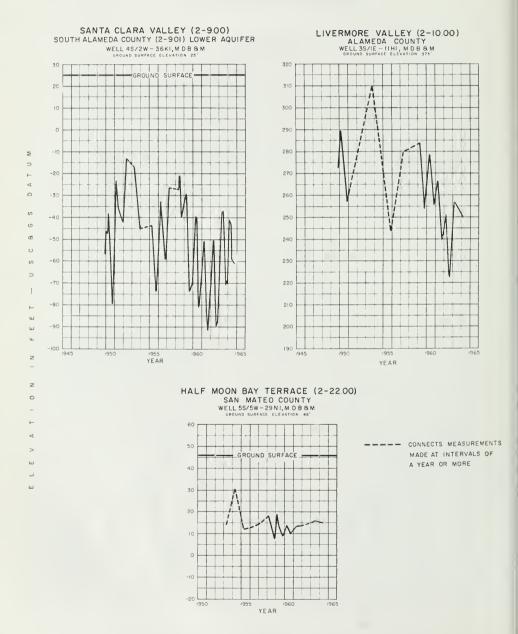
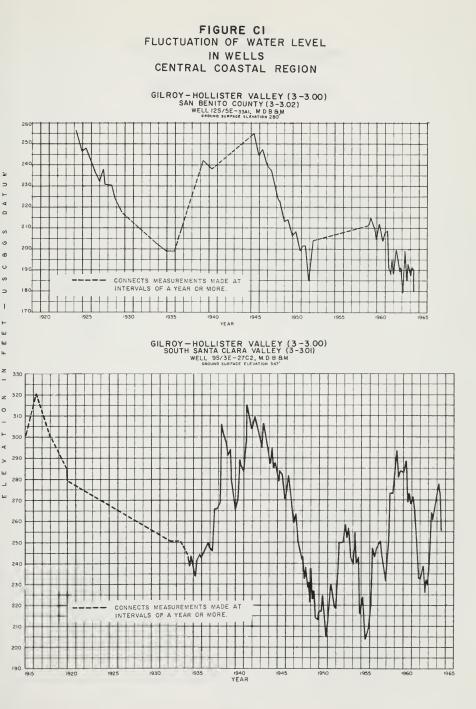
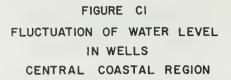

-60

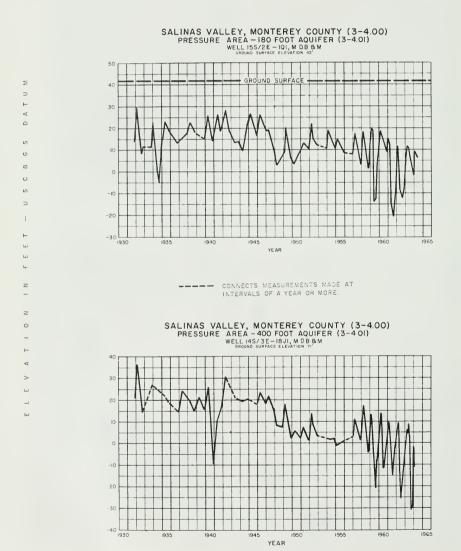
FIGURE CI

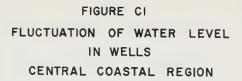
FLUCTUATION OF WATER LEVEL IN WELLS SAN FRANCISCO BAY REGION




CONNECTS MEASUREMENTS MADE AT



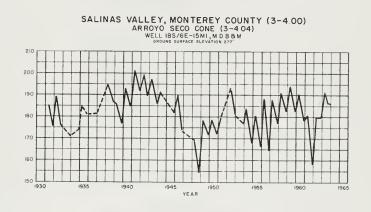

FLUCTUATION OF WATER LEVEL IN WELLS SAN FRANCISCO BAY REGION


FIGURE CI

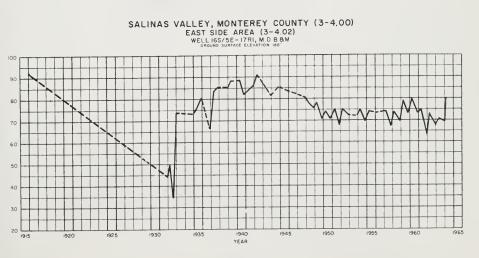
DATUM

ה 2

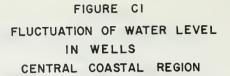
ت ر

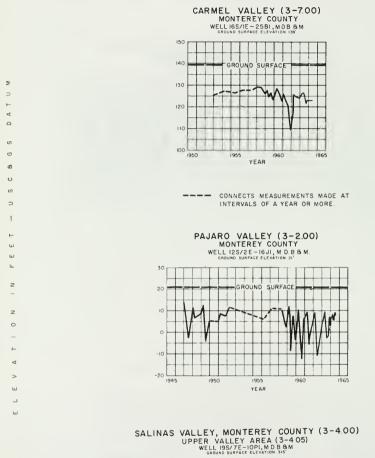

n

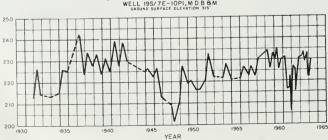
> 1



-


>




----- CONNECTS MEASUREMENTS MADE AT INTERVALS OF A YEAR OR MORE.

-93-

SURFACE WATER QUALITY

APPENDIX D

ACKNOWLEDGMENTS

The Department of Water Resources gratefully acknowledges the assistnce and contributions of the many public agencies, private organizations, and ndividuals whose cooperation greatly facilitated the preparation of this ppendix. Special mention is made of the following agencies:

Federal

United States Geological Survey

State

California Department of Public Health

INTRODUCTION

This appendix contains data pertaining to the quality of surface waters in the Central Coastal Area. The data presented are the observed physical, chemical, bacteriological, and radiological characteristics of surface waters sampled during the 1964 water year, which covers the period from October 1, 1963 through September 30, 1964.

Laboratory Methods and Procedures

Methods of mineral and bacterial analysis, in general, are those described in the American Public Health Association publication, "Standard Methods for the Examination of Water and Sewage", 11th Edition, 1960. In some cases, the methods described in U. S. Geological Survey, "Methods for Collection and Analysis of Water Samples", Water Supply Paper 1454, 1960, have been employed.

Types of analyses normally made of surface water samples collected by the Department are mineral, bacterial, radiological, and trace element.

Sampling Station Data and Index

Table D-1, "Sampling Station Data and Index", is an alphabetic listing of stations from which surface water samples were collected. The analyses of these samples are reported in subsequent tables. The station number is an arbitrary number that has been assigned to each station. The location pertains to either the township, range, and section of the Public Land Survey or to latitude and longitude. The stations are classified into monitoring, investigational, and operational types.

nalyses of Surface Water

Table D-2, "Analyses of Surface Water", includes physical characterstics of the water and results of mineral and bacterial analyses. The data re presented in numerical order by Water Quality Control Board regions, and n a north to south order of streams within a region. At the time the samples ere collected for laboratory examination, field determinations were made for issolved oxygen (DO) by the modified Winkler method, water temperature, and pH. isual inspections were made of the streams and the physical conditions were oted. This information is kept on file with the Department.

Samples collected for bacterial examination were delivered to the aboratory as quickly as possible. Results of bacterial determinations preented in this appendix should be considered as qualitative and quantitative ndicators. Undue weight should not be given to the values for quantitative urposes.

Data from operational stations are shown separately at the end of he table. These data consist of analyses of South Bay Aqueduct water.

ummary of Coliform Analyses

Coliform data included in Table D-2 are made more usable by sumarizing the results of the analyses of the 24 samples collected at each tation during the year. Table D-3 is a summary of these analyses.

pectrographic Analyses of Surface Water

Spectrographic analyses were made to determine the concentration of 7 different metals in surface water samples. Most of these metals are present n very small amounts and are often called trace metals. The concentrations ndicated in Table D-4 are in parts per billion instead of parts per million which is commonly used in reference to concentrations of mineral constituents. The symbols included with the constituent quantities are:

< Less than the amount indicated.

 \leq Equal to or slightly less than the amount indicated.

Radioassays of Surface Water

Table D-5, "Radioassays of Surface Water", presents the radioactivity of surface water samples collected at 24 monitoring stations. The samples were collected in May and September at the same time that samples were collected for standard mineral analyses shown on Table D-2. The methods and procedures of sample preparation and determination of radioactivity in surface water are described in "Standard Methods for the Examination of Water and Sewage, 11th Edition".

Results are expressed as pico curies per liter (pc/l). The term pico curies is also written micro-micro curies and is further defined as 10^{-12} curies. Four values are reported for each sample: (a) alpha activity in the filtrate (dissolved material), (b) alpha activity in the solids retained on the filter (suspended material), (c) beta activity in the filtrate, and (d) beta activity in the solids. Sample counts are corrected for background and geometric efficiency. Dissolved material is designated by "Diss." in the table. Standard statistical procedures are utilized to compute the 0.9 error. The final result is expressed (symbolically) as x + y pc/l. This means that in a series of determinations on the same sample, the value of x should fall between x - yand x + y 90 percent of the time.

Salinity Observations at Bay and Delta Stations

Table D-6 describes the seven stations for which salinity data are listed in Table D-7 and includes maximum observed salinity at bay and delta

tations. Table D-7 presents chloride concentrations of samples collected at even stations between Sobrante Beach and Collinsville for the period October 1, 963 through June 30, 1964.

lectrical Conductance

Data from two electrical conductivity recorders are presented in igures D-1 and D-2. These data are machine prepared graphs. Daily mean alues are plotted in Figure D-1 and single daily reading at 1300 hours are lotted in Figure D-2. Each figure or graph presents the data from a station.

TABLE D-1 SAMPLING STATION DATA AND INDEX

Station	Station Number	Location ⁸	Beginning of Record	Station ^C Type	Sampled ^d By	Analysis on page
ALAMEDA CREEK NEAR NILES	73	4S/1W-15	Dec. 1951	м	DWR	116
ALAMEDA CREEK NEAR NILES	73	4s/1w-15	Dec. 1959	м	USGS	114
ALBA CREEK	245	9S/2W-32	Oct. 1963	I	DWR	134
ALTAMONT CREEK AT ALTAMONT TURNOUT DF SOUTH BAY AQUEDUCT	201	2S/3E-31	June 1962	0	DWR	113
ARROYO DEL VALLE NEAR LIVERMORE	71	4S/2E-4	July 1958	м	DWR	117
BEAN CREEK ONE MILE EAST OF FELTON	204	10s/2w-22	Aug. 1963	I	DWR	143
BEAR CREEK AT BOULDER CREEK	205	9s/2w-30	Aug. 1963	I	DWR	132
BEAR CREEK FOUR MILES NORTHEAST OF BOULDER CREEK	206	9S/2W-1D	Aug. 1963	I	D₩R	129
BETHANY FOREBAY AT SOUTH BAY PUMPING FLANT	207	2S/3E-10	Apr. 1962	٥	DWR	163
BIG RIVER NEAR MOUTH	8c	17N/17W-24	Jan. 1959	м	DWR	105
BLANCO DRAIN INTO SALINAS RIVER	246	145/2E-16	Aug. 1964	I	DWR	153
BOULDER CREEK AT BOULDER CREEK	208	9s/2w-30	Aug. 1963	I	DWR	133
BOULDER CREEK	247	9s/3w-14	Oct. 1963	I	DWR	136
BRANCIFORTE CREEK NEAR SANTA CRUZ	209	11s/1W-7	Nov. 1963	I	DWR	147
BRANCIFORTE CREEK	248	11s/1W-7	Aug. 1963	I	DWR	148
BUTANO CREEK	249	8s/5w-14	Sept. 1963	I	DWR	123
BUTANO CREEK	250	8S/5W-25	Apr. 1964	I	DWR	124
CARBONERA CREEK	251	115/1W-7	Jan. 1964	I	DWR	149
CARMEL RIVER AT ROBLES DEL RIO	83	175/2E-2	Jan. 1952	м	DWR	158
CLEAR CREEK AT BROOKDALE	210	9S/2W-32	Aug. 1963	I	DWR	135
COLLINSVILLE	236	38°04' Lat ^b 121° 51' Long	1924	м	DWR	171
COYOTE CREEK NEAR MADRONE	82	9s/3E-9	Jan. 1952	м	DWR	124
CROCKETT	237	38°03' Lat ^b 122°13' Loug	1946	м	DWR	171
DENNISTON CREER	252	55/6W-2	Sept. 1963	I	DWR	118
FALL CREEK ONE-RALF MILE NORTH OF FELTON	211	10S/2W-16	Aug. 1963	I	DWR	142
GAZDS CREEK	253	9S/5W-11	Sept. 1963	I	DWR	125
GUALALA RIVER, SOUTH FORK, NEAR ANNAPOLIS	9a	10N/14W	Jan. 1959	м	DWR	107
KINGS CREEK TWO MILES NORTH DF BOULDER CREEK	213	9s/2w-18	Aug. 1963	I	DWR	130
LIVERMORE CANAL AT PATTERSON RESERVOIR	214	3S/3E=6	Aug. 1962	D	DWR	164
LOMPICO CREEK ONE MILE NORTH OF OLYMPIA	215	10S/2W-11	Aug. 1963	1	DWR	141
LOS GATOS CREEK NEAR LOS GATOS	74	8S/1W-29	Dec. 1951	м	DWR	121
LOVE CREEK AT BEN LOMOND	216	10S/2W-4	Aug. 1963	I	DWR	139
MARTINEZ	2 39	38°02' Lat ^b 122°08' Loug	1926	м	DWR	171
MARSHALL CREEK	254	10S/2W-5	Oct. 1963	I	DWR	140
MIDDLE POINT	255	38°03' Lat ^b 121°59' Long	Jan. 1964	м	DWR	171
NACIMIENTO RIVER NEAR SAN MIGUEL	43b	255/11E-4	July 1958	м	DWR	161
NAFA RIVER NEAR ST. HELENA	72	8N/5W-33	Dec. 1951	м	DWR	112

a Locations are referenced to Mt. Diablo Base and Meridian.
 b Locations given in latitude and longitude because the areas have not been surveyed for township, range, and section.
 c M-Monitoring, l-investigational. O-Operational.
 d DWR-Department of Water Resources, USGS-United States Geological Survey

TABLE D-I SAMPLING STATION DATA AND INDEX

Station	Station Number	Location	Beginning of Record	Station ^C Type	Sampled ^d By	Analysis on page
VARRO RIVER NEAR NAVARRO	85	15N/16W-7	Jan. 1959	м	DWR	106
WELL CREEK ONE MILE NORTHEAST OF BEN LOMOND	219	10s/2w-3	Aug. 1963	I	DWR	139
O RIVER NEAR FOR1 BRAGG	10c	18N/17W-10	Jan. 1959	м	DWR	104
JARO RIVER NEAR CHITTENDEN	77	12S/3E-12	Dec. 1951	м	DWR	152
SCADERO CREEK	256	8S/4W-5	Sept. 1963	I	DWR	122
TTSBURG	240	38°02' Lat ^b 121°53' Loog	1945	М	DWR	171
RT CHICAGO	241	38°04' Lat ^b 122°02' Long	1946	м	DWR	171
RISIMA CREEK	257	6S/5W-2 .	Sept. 1963	I	DWR	119
RISIMA CREEK	258	6S/5W-21	Feb. 1964	I	DWR	120
SSIAN RIVER, EAST FORK, AT POTTER VALLEY POWERHOUSE	10 <i>a</i>	17N/11W-6	May 1951	М	DWR	111
SSIAN RIVER AT GUERNEVILLE	10	8N/10W-32	Apr. 1951	м	DWR	108
SSIAN RIVER NEAR HEALDSBURG	9	9N/9W-22	Apr. 1951	м	DWR	109
SSIAN RIVER NEAR HOPLAND	8a	14N/12W-36	Apr, 1951	м	DWR	110
LINAS RIVER NEAR BRADLEY	43c	23S/10E-15	July 1958	м	DWR	159
INAS RIVER AT PASO ROBLES	43a	265/12E-28	Apr. 1951	м	DWR	162
INAS RIVER NEAR SPRECKELS	43	15S/3E-18	Apr. 1951	м	DWR	156
INAS RIVER, MILE 9.51	2 5 9	15S/2E-2	Aug. 1964	I	DWR	155
INAS RIVER, MILE 7.13	260	14S/2E-33	Aug. 1964	I	DWR	155
LINAS RIVER, MILE 4.65	261	14S/2E-16	Aug. 1964	I	DWR	154
INAS RIVER, MILE 3.50	262	145/2E-16	Aug. 1964	I	DWR	154
INAS RIVER, MILE 1.70	263	145/2E-7	Aug. 1964	I	DWR	153
INAS RIVER, MILE 0.00	264	14S/1E-1	Aug. 1964	I	DWR	153
ANTONIO RIVER NEAR PLEYTO	43d	24S/9E-3	July 1958	м	DWR	160
8 BENITO RIVER NEAR BEAR VALLEY FIRE STATION	77a	15S/7E-28	July 1958	м	DWR	157
GREGORIO CREEK	265	7s/5w-15	Sept, 1963	I	DWR	120
LORENZO RIVER AT BIG TREES	226	10S/2W-27	Aug. 1963	I	DWR	146
LORENZO RIVER AT BIG TREES NEAR FELTON	75	10S/2W-27	Dec, 1951	м	DWR	146
LORENZO RIVER AT BOULDER CREEK	227	9s/2W-30	Aug. 1963	I	DWR	134
LORENZO RIVER SIX MILES NORTH OF BOULDER CREEK	228	85/3W-25	Aug. 1963	I	DWR	128
LORENZO RIVER AT FELTON	229	10S/2W-22	Aug. 1963	I	DWR	144
LORENZO RIVER AT SANTA CRUZ	230	115/2W-12	Aug. 1963	1	DWR	151
QUEL CREEK AT SOQUEL	76	11s/1W-10	Dec. 1951	м	DWR	150
NONBILL CREEK	243	38*04' Lat ^b 121*54' Long	1957	М	DWR	171
BAR CREEK ONE MILE NORTH OF BOULDER CREEK	232	9s/2W-19	Aug. 1963	T	DWR	131
S CREEK NEAR MORGAN HILL	96	10S/3E-17	July 1952	М	DWR	137
TEHOUSE CREEK	266	9s/5w-13	Sept. 1963	I	DWR	126
ANTE CREEK AT FELTON	233	10S/2W-22	Aug. 1963	I	DWR	145
YANTE CREEK AT ZAYANTE	234	10S/2W-2	Aug, 1963	I	DWR	138

Locations are referenced to Mt. Diablo Base and Meridian. Locations given in latitude and longitude because the areas have not been surveyed for township, range, and section. M-Monitoring, I-lavestigational, 0-Operational. DWR-Department of Mater Resources, USCS-United States Geological Survey

ANALYSES OF SURFACE WATER TABLE D-2

NORTH COASTAL REGION (NO. 1)

	8	T														
	Anelyzce by 1			USCS												
	Hordness bid - Coliform es CoCO ₃ 11 Totol N.C. Dom Dom			62. 230.	620. 230.	23.	6.2 6.2	2.3	62. 6.2	23. 620.	6.2 62.	6.2	13. .62	.62	130. 2,400.	
- Li -	n ppm	1		-1	20	9	25	2	15	1	-	-1	ñ	e	-1	
	SOO SO			0	0	0	0	0	0	0	0	0	0	0	0	
				61	34	53	51	45	47	56	59	61	64	63	64	
	cent eod	Γ		27	32	20	28	29	28	27	25	28	27	29	27	
Totel	solved solved in com										100				108	
	Other constituents					As = 0,01					$A_{5} = 0.00$ ABS = 0.0 $PO_{4} = 0.05$				ABS = 0.0 PO4 = 0.00	
	Silice (SiOg)										20				19	
Lion	Boron (B)			0.0	0.1	0.0	0.0	0.1	0.0	0.1	0.1	0.1	0.2	0.2	0.1	
er mil	Fluo- rids (F)										0.01					
parts per million equivalants per million	Ni - trate (NOg)	T	TA. 10c								0.01				0.01	
por equivol	Chio- rids (CI)	T	NOYO RIVER NEAR FORT BRAGG (STA. 10c)	11 0.31	7.0	7.0	7.8	3.8	7.4	8.5 0.24	7.5	7.0	8.5	10 0.28	10	
Ē	Sul - tats (SO ₆)	+	FORT 8								6.0				6.0	
tituents	Bicor- banate (HCD3)	+	ER NEAR	83 1.36	42	68 1.11	70	.95 0.95	61	76	78	82	83 1.36	86	84 1,38	
Mineral constituents	Corbon - B ote (CO ₃) ((t	IN RIV	0.00	0.00	0.00	0.07	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	
Miner	Poton- Co (K)	$^{+}$	-								0.02				0.02	
	Sodium P.	╀		10 0.44	7.3 0.32	8.4	9.3 0.40	8.4	8.6	9.4 0.41	0.40	11 0.48	11 0.48	12 0.52	11	
	Mogne- Sum Sium	1		1.22	0.680	1.06	1.02	0.90°	0*6*0	1.120	4.0	1.220	1.280	1.260	4.0	
	Coleium h	1									0.85				<u>19</u> 0.95	
-	¥	4	-	7.4	7.2	<u>6.8</u> 7.8	7.4	6.8 7.6	7.6	7.3	8.0	7.8	7.2 8.0	7.1 8.0	7.8	
a filment	(micramhos at 25°C)	T		170	104	143	138	123	127	. 051	160	166	174	175	175	
	no con con con con con con con con con c		_	87	56	92	54	67	98		92	87	96	81	80	
	Dissol			8.8	10.1	11.4	11.6	12.1	11.9	10.7	6.9	8.7	8.8	7.9	8.2	
	Temp in oF	1		59	55 1	44	44 1	43	4.5	50	54	60	68	3	58	
	Dischorgs Temp Dissolvsd in cfs in ^o F osygen ppm %5of			6.3	640	16	150	149.6	160	43	28	21	7.6	4.0	1.8	
	Dots and time sampled P.S.T.			10-9-63 0935	11-14-63 1545	12-11-63 0830	1-10-64 0920	2-7-64 0900	3-13-64 0840	4-17-64 0920	5-14-64 0750	6-5-64 0800	7-16-64 1145	8-13-64 0715	9=4=64 0845	

Laboratary pH.

a Field pH

Sum of calcium and mognesium in epm.

Sum at election and magnetation in spin. In the second second

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination.

32505-0-8 6-61 200 590 Anoti median and ange, respectively. Calculated fram analyses and aby calcionic Oppariment of Public Mealth, Division of Laboracianes, or United Stores, Public Mealth Service. Mareal analyses and by United Stores, Coalogical Stores, Ocality Meals, Decision Descriment of Public Meals, Divised Stores, Public Mealsh, Service. Grand Darrier (BSCCD), Managoline Meals Darrier of Stores, Ocality Meals). Les Angeles, Descriment of Meals on Decession (USBR), United Stores, Public Mealsh, Service. Data Mealsh (EDPCD), Managoline Meals Data data Calcinano (Marcia). Stores and Power (LADMP), City at Los Angeles, Department of Public Mealsh (EDPCD), Managoline Meals Data data and Stores (DWR), os and Power (LADMP), City at Los Angeles, Department of Public Mealsh (EDPCD), Managoline Meals (TL), on Calcianio Department Manar Resources (DWR), os indicated

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1)

Analyzed by I USG8 Coliform^N MPN/mi Tur - bid ----2 -65 s 2 ~ 20 -15 Hordness es CaCOs fotol N.C. 0 0 0 0 0 0 0 0 0 0 0 0 88 61 11 72 19 55 28 82 83 87 87 87 -100 ส 23 22 53 23 25 24 22 23 25 26 24 Total solids 128 129 constituents = 0.00 = 0.00 • 0.00 • 0.1 Other As ABS POL AB ABS PO4 Silico (SiO₈) 11 16 Boron (B) 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.2 equivolents psr mittion ports per million Fluo-ride (F) 0.01 NI-Irota NO₄) Bc) 0.2 0.01 HDUTH (STA. 7.8 8.0 6.5 0.18 7.1 7.0 7.3 6.3 7.0 6.5 0.18 5.8 9.8 7.0 Chio-5.0 8.0 Sul -fots (SO_a) BIG RIVER NEAR ē Minarol constituents B.cor-bonota (HCO₃) 122 <u>121</u> 1.98 74 90 97 79 69 1.64 $\frac{109}{1.79}$ 117 1.97 124 Corbon-ote (CO₅) 0.00 0.00.0 0.00 0.00 0:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Potos-eium (K) 0.03 0.03 11 0.48 13 Sodium (No) 12 0.52 8.3 9.4 9.9 8.6 8.3 11 0.48 12 0.52 13 0.57 14 0.61 7.8 1.76^c L. 22C 1.10c 1.56c 6.6 1.72c 1.74^c Magne-Rium (Mg) Colcium (Co) $\frac{22}{1.10}$ 22 1.10 7.8 7.5 6.8 7.8 2.0 7.7 7.6 7.6 7.9 7.9 7.7 7<u>*5</u> 8.0 7.9 E ala Specific conductance (micromhos of 25°C) 224 179 177 156 140 205 216 223 223 155 00m %Sat Olesolved osygen 102 80 100 96 66 102 98 98 101 104 105 8 9.8 9.6 7.8 10.01 1.8 11.7 0.3 9.3 9.3 8.9 11.7 11.8 Dischorge Temp in cfs in of 64 44 91 48 46 58 64 64 70 99 61 56 est. 10 eat. est. eat. est. 8.8 29.5 19.6 147.8 8 6 277 9 Dote and time eampled P.S.T. 11-14-63 1545 12-11-63 0945 10-9-63 1120 3-12-64 1520 4-16-64 1500 5-13-64 1310 7-16-64 1245 8-12-64 1145 2-6-64 1700 6-4-64 1250 9-3-64 1315 1-9-64 1415

ß 32505-0-8 6-61 200

e Field pH.

Loboratory pH. م

Sum of calcium and magnetum in terms (Aa), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexarolent chramium (Cr⁺⁴), reported here as $\frac{0.0}{0.00}$ except as shown. Sum of calcium and magnesium in epm.

Derived from conductivity vs TDS curves .

Determined by addition of analyzed constituents.

Gravimetric determination .

[£]

Amed median and range, respectively. Celeviolated fram andyses and applicate monthly samples and by Celeviorab Department of Public Meetine, Division of Laboratoria, or United Stores Public Meetin Service. Maned analyses and by United Stores Coelogical Survey, Ouclive Marce Marce Department of Andrews, Survey on Colombian Meetine, Survey, Ouclived Stores Public Meetine, Stores Ouclived Stores Public Meetine, Stores Coelogical Survey, Ouclived Stores Analysis, Stores Coelogical Survey, Ouclived Stores Public Meetine, Stores Coelogical Survey, Ouclived Stores Analysis, Stores Coelogical Survey, Ouclived Stores Coelogical Survey, Ouclived Stores Oucline (MAD); Lan Angelea Department of Marce and Devel (LADMP); City of Las Angelea, Department of Public Meetine, Rubothis, City of Long Beech, Department of Public Meetine, Rubothis, City of Long Beech, Department of Public Meetine, Rubothis, City of Long Beech, Department of Public Meetine, Rubothis, City of Long Beech, Department of Public Meetine, Rubothis, City of Long Beech, Department of Public Meetine, Rubothis, City of Long Beech, Department of Public Meetine, Rubothis, City of Long Beech, Department of Public Meetine, Rubothis, City of Long Beech, Department of Public Meetine, Rubothis, City of Long Beech, Department of Public Meetine, Rubothis, City of Long Beech, Department of Public Meetine, Rubothis, City of Long Beech, Department of Public Meetine, Rubothis, City of Long Beech, Department of Public Meetine, Rubothis, City of Long Beech, Department of Public Meetine, Rubothis, City of Long Beech, Department of Public Meetine, Rubothis, Rubothis, Rubothis, Rubothis, Rubothis, City of Long Beech, Department of Public Meetine, Rubothis, Rubothis

ANALYSES OF SURFACE WATER

NORTH COASTAL REGION (NO. 1)

Dote ond time sempled P.S.T.	Dischorge	1.00														ACUIVOIENTE DEL MUIIOD	2			Tatat					
P.S.T.	in cfs	e e	Dischorge Temp Oissolvad in cfa in of osygen	tvad C	Specific conductance (micromhos	Ha	Colcium		Sodium			Bicor-		Chio-	ź	luo- B		Silice		Bolved Bolids	- te u	Hardnes No CoCC	0°°	Mardness bid - Colifarmh Anolyzed	A noiyz
			Edd	ppm %Sat	12,67 10	eta	(Ce)	(0 W)		EX.	(co3)	(HCD ₃)	(SO4)	(<u>C</u>)	(SON)	(L)	(B)	- 1	oliner constituents	Edd u	≓ α	Pom pi	N C		
											1 DEGAVAN	danta t	N BAPN	VANADOR DIVED NEAD NAVABBO (STA. 85)	CTA 8h		_								
										_		-		-	-										
10-9-63 1237	24	79	8.6	06	265	7.8		2.26 ^c	<u>12</u> 0.52		0.00	<u>150</u> 2.46		11 0.31			0.0				19	113		1 2.3	nscs
11-14-63 1745	1,000	57	9.5	16	193	7.6 7.3		1.54c	<u>9.7</u> 0.42		0.00	88 1.44		7.5 0.21			0.1				21	77	5 300	230.	
12-11-63 1100	155	97	10.5	96	232	$\frac{7.1}{7.9}$		1.92 ^c	<u>11</u> 0.48		0.00	<u>119</u> 1.95		9.0		1	0.2				20	96		3 6.2	
1-10-64 1030	142	. 97	11.5	96	242	<u>6.9</u> 7.9		2.02c	<u>13</u> 0.57		0.00	125		<u>9.0</u> 0.25		-	0.1				22	101		3 6.2	
2-7-64 1125	285	47	11.6	98	210	7.1 8.0		<u>1.72</u> c	10 0.44		0.00	1.80		7.0 0.20			0.1				20	86		4 13.	
3-13 -6 4 1050	180	47	11.3	96	197	7.9		1.60c	<u>10</u> 0.44		0.00	95 1.56		<u>7.2</u> 0.20		1	0.1				22	80	2 20	23.	
4-17-64 1100	80	56	10.1	96	249	7.6 8.4		2.10 ^c	12 0.52		2 0.07	<u>128</u> 2.10		8.5		1	0.1				20	105	0	1 62.	
5-14-64 0910	50	58	9.5	92	259	7.5 8.1	27 1.35	10	0.44	0.03	0.00	<u>138</u> 2.26	$\frac{10}{0.21}$	<u>9.5</u> 0.27	$\frac{0.1}{0.00}$	0.3	0.1	A8 A8 P0	AB = 0.00 ABS = 0.0 P04 = 0.05	154	16	110	0	1.3	
6-5-64 0940	36	63	9.1	94	265	7.8		2.20 ^c	<u>13</u> 0.57		0.00	<u>141</u> 2.31		8.5		1	0.2				21	110	0	1 62.	
7-16-64 1400	12	74	10.3	119	269	7.6		2.22c	<u>13</u> 0.57		0.00	<u>144</u> 2.36		8.6		1	0.2				20	111	0		.50
8-13-64 0845	7.1	65	6.9	73	270	7.7		2.24c	14 0.61		0.00	<u>146</u> 2.39		$\frac{7.5}{0.21}$		1	0.3				21	112	0	3	2.3 .62
9-4-64 1045	6.9	62	7.8	80	269	8.0	28 1.40	<u>10</u> 0.86	14 0.61	0.03	0.00	$\frac{147}{2.41}$	<u>9.0</u> 0.19	8.1 0.23	0.00		0.2	16 A8 P0	AS = 0.00 ABS = 0.1 $PO_4 = 0.00$	157	21	113	0	1 1,300.	
						_																			

b Laboratary pH. o Field pri.

Sum of calcium and magnesium in epm.

Sum of calcium and magneturum in spin. In (F), alumium (Al), areacise (As), cosper (Cu), lead (Pb), mangarese (An), zinc (Zn), and herevalent chromium (C⁺⁴), reported here a $\frac{0.0}{0.00}$ except as shown.

e Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

9 Gravimetric determination

Amuol median and range, respectively. Calculated fram mathyse and applicate manhly samples made by Californio Department of Public Health, Division of Loboratories, or United Stenes Public Health, Sarvice. Maxeel analyses made by United Stenes Genesical Survey, Calarity of Ware Branch, USSS). United Stenes Public Health, Sarvice. (USPHS): San Bernardine County Flood Coved Datavic (SGECC). Manupatine Water Datavic al Southan Californe (MAD). Los Angels & Department of Maner oud Power (LDDMP); City of Los Angels, Department of Public Health (LDDP); Remood Teaning Laboratorea. Inc. (TTL): or California Department of Water cal Power (LDDMP); City of Los Angels, Department of Public Health (LDDP); Remood Teaning Laboratorea. Inc. (TTL): or California Department of Water cal Cover (LDDMP); City of Los Angels, Department of Robic Health (LDDP); Remood Teaning Laboratorea. Inc. (TTL): or California Department of Water cal

32505-0-H 6-61 200 SPO

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1)

	-	v	<u> </u>														
		Analyzed by 1			USGS												
	4	Hardness bid - Coliform es CaCO ₅ n phm ppm ppm			62. 62.	230.	2.3	2.3	6.2	2.1	1.3 23.	23.	.50	2.1 .23	6.2 23.	0,2 2.3	
	Tur-	- piq u			6	140	1	1	ŝ	10	-1	1	-1	3	1	1	
		Totol N.C.			0	7	0	0	e	9	0	0	0	0	0	0	
	-	Totol PPm			118	20	92	101	06	83	108	110	108	119	115	119	
_	8	i legi			19	19	18	19	19	20	19	18	21	19	20	19	
2	101	solved a spide										145				160	
		Other constituents										AB = 0.00 ABS = 0.00 PO ₄ = 0.00			00.0	ABS = 0.00 $PO_4 = 0.00$	
	Į	Silico (SiOg)										12				16	
	u	Boron (B)	(a)		0.0	0.1	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.2	0.1	
millior	E .	Fluo- ride (F)	(STA.									0.01					
porte per million	equivolente per million	Ni - Irota (NO ₃)	NAPOLTS	-								0.4				0.6	
Å	aquivo	Chio-	NEAR AN		11 0.31	3.8	8.6	8.1 0.23	6.5 0.18	6.0	7.3	8.0	<u>6.5</u> 0.18	7.5	7.5	7.5	
5		Sul - fota (SO4)	FORK	[_								14				13 0.27	
atituente		Bicor- bonate (HCO ₃)	HILDOS -	_	<u>154</u> 2.52	<u>59</u> 0.97	$\frac{114}{1.87}$	<u>125</u> 2.05	$\frac{106}{1.74}$	$\frac{97}{1.59}$	<u>128</u> 2.10	$\frac{134}{2.20}$	<u>136</u> 2.23	<u>144</u> 2.36	<u>146</u> 2.39	<u>153</u> 2.51	
Minerol constituents		Corbon- ote (CO3)	CUMALA RIVER. SOUTH FORK, NEAR ANNAPOLIS (STA 94)	_	0.00	0.00	0.00	5 0.17	0.00	0.00	4 0.13	0.00	0.00	30.10	0.00	0.00	
Ň		Potos- (X)	CUALA	-								1.0				1.1 0.03	
	Ì	Sodium (No)			13 0.57	<u>5.5</u> 0.24	9.2 0.40	11 0.48	9.4 0.41	9.4	12 0.52	11 0.48	1 <u>3</u> 0.57	13 0.57	13 0.57	13 0.57	
	Ī	Mogne- eium (Ng)			2.360	1.000	1.840	2.020	1.800	1.660	2.160	11 0.90	2.16 ^C	2,38 ^c	2.30	11 0.93	
		Calcium (Ca)										26 1.30				29	
		X 14			7.8	7.2	7.3	7.3	7.5 8.2	8.0	7.6	7.9	8.0 8.1	7.8 8.3	7.9	7.5 8.0	
	Specific	Conductance PH (micromhos PH et 25°C)			277	122	217	236	201	199	252	258	257	277	272	277	
		100			112	96	95	101	103	100	101	112	120	106	108	97	
		Dissolved ocygan ppm %Sat			10.3	10.1	11.3	12.3	12.0	11.3	10.0	10.9	11.3	9.3	9.5	8.9	
		Êŭ Eŭ			68	56	47	45	48	50	61	63	66	72	72	68	
		Discharge Temp Disselved in afte in of exygan ppm %3at			17	4,100	120	103	186	250	43	28	36	6.9	3.4	3.1	
		P.S.T.			10-9-63 1435	11-14-63 2000	12-11-63 1345	1-10-64 1210	2-7-64 1410	3-13-64 1205	4-17-64 1345	5-14-64 1110	6-5-64 1145	7-16-64 1545	8-13-64 1100	9-4-64 1330	

o Field pH.

c Sum of calcium and magnesium in epm. b Loboratory pH.

e Sum at ediction and magnesium in Apm. d Hon (F4), oluminum (Al), arsenic (As), exoper (Cu), lead (P5), mangarese (Mn), zinc (Zin), and heavedent chromium (Ci⁺⁵), reported here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents.

g Gravimetric determination

Amel median and inange, respectively. Colculated from analyses and support of programment of Public Mealth, Division of Laboratories, or United Stores Public Mealth Service. Mineral analyses media by United Stores Geological Survey, Quality Meets Banera Dopartment of Inaliano, Surveu of Reclamation (USBR), United Stores Public Mealth Service. Carefol District (BGECC): Management of Sourthan Californe (MID), Las Angolas Dopartment of Inaliano, Surveu of Reclamation (USBR), United Stores Public Mealth Service. Public Media (BGECC): Management of Sourthan Californe (MID), Las Angolas Department of Matter and Power (LADMP), City of Las Angolas, Dopartment of Public Mealth Service. (ITL), proceeding Stores, Jacoratoria Stores, Department of Public Mealth (LEDR); Ering Leberatoria Laboratora, Inc. (ITL), proceeding Department of Nature Associas, Dopartment of Nature Associas, Department of Nature Associas, Inc. (ITL), proceeding Department of Nature Associas, Department of Nature Associas, Decompared Nature Associas, Department of Nature Associas, Department of Nature Associas, Decompared N

32305-0-H 6-61 200 SPO

ANALYSES OF SURFACE WATER TABLE D-2

NORTH COASTAL REGION (NO. 1)

																1
	A manufacture de	by 3		USGS												
	Mana and	h ppm MPN/mi		2.3	2,400.	6.2	23. 6,2	2.3 62.	620. 62.	.62 2.3	23. 23.	13. 23.	23. 13.	23. 6.2	.62 1.3	
	5			s	40 7	m	15	9	25	4	-	1	~	6	2	
	-	es CoCO _S es CoCO _S pom ppm		0	7	9	0	2	8	-1	0	-1	m		0	
	- Paraly	rordness es CoCOs Pam N.C.		124	80	136	101	120	67	142	149	156	132	127	124	
		sod - rum		14	16	15	17	15	17	15	15	14	13	14	13	
	Totel	solved solids in som									186				143	
		Other constituents								00 0 = °	$PO_4 = 0.45$			40 - 0 00	$P0_4 = 0.00$	
	ľ	Silica (SiOg)									14				16	
1	lion	Boron (B)		0.2	0.3	0.3	0.3	0.2	0.2	0.3	0.4	0.5	0.4	0.6	0.5	
million	Ē	Fluo- ride (F)	10)								0.01					
ports per million	equivolants per million	Ni- trote (NO ₃)	(STA. 1								0.7				0.0	
00	equivol	Chio- rida	TTIIA	9.0 0.25	<u>5.2</u> 0.15	9.0 0.25	7.1	7.8	<u>5.2</u> 0.15	9.0 0.25	9.0	8.5 0.24	<u>5.0</u> 0.14	4.5 0.13	4.6 0.13	
-		Sui - tote (SO4)	I GUERN							_	17 0.35				11 0.23	
i tuan ta		Bicar- bonsts (HCO ₃)	RIVER A	<u>155</u> 2.54	89 1.46	<u>159</u> 2.61	<u>121</u> 1.98	144 2.36	1.79	<u>166</u> 2.72	<u>182</u> 2.98	3.10	<u>157</u> 2.57	<u>152</u> 2.49	<u>154</u> 2.52	
Mineed constituents	and in	Corbon - E ate (CO ₃) (RUSSIAN RIVER AT GUERNEVILLE (STA.	0.00	0.00	0.00	0.23	0.00	0.00	3 0.10	0.00	0.00	0.00	0.03	0.00	
a di na		Potas- Co sum (K)									0.04				0.03	
		Sodium P (Nd)		9.4	7.1	11 0.48	9.3	9.8	8.7 0.38	12 0.52	0.52	12 0.52	8.8	9.5	9.0 0.39	
		Magne- S, s,um (Mg)		2.48	1.60 ^c	2.720	2.02c	2.40c	1.920	2.85c	1.53	3.12c	2.64c	2.54c	14	
		Colcium M (Ca)									<u>29</u> 1.45				<u>27</u> 1.35	
F		포 이 4	,	7.7	7.5	7.4	7.1 8.5	7.8	8.4	8.3	8.2 8.1	8.4	8.2	8.3	8.0	
	acific	conductance (micromhos at 25°C)		276	189	306	228	264	218	312	329	339	281	273	269	
-	Sp			92	88	93	66	76	96	124	127	104	122	100	104	
		Dissolved osygen ppm %Sof		9.4	9.1	10.7	11.5	10.4	10.6	11.5	11.4	9.1	10.2	8.5	0.6	
F				69	57	49	48	54	52	67	70	73	77	76	74	
		Dischorge Temp In cfe in of		216	4,710	375	748	1,570	1,620	340	173	114	152	142	170	
		Date ond time someled P.S.T.		10-9-63 1655	11-14-63 2145	12-11-63 1545	1-10-64 1355	2-5-64 1500	3-13-64 1400	4-17-64 1550	5-14-64 1310	6-5-64 1415	7-16-64 1700	8-13-64 1245	9-4-64	

b Laboratory pH. a Field pH.

Sum of calcium and magnesium in epm.

Sum of calcium and magnesum in spm. In spm. (Cu), lead (Pb), manganese (Mn), znc (Zn), and haravalant chrommum (Cr.⁴5), reported here as $\frac{0.0}{0.00}$ except as shown. Item (Fe), alumnum (Al), arsanic (As), copper (Cu), lead (Pb), manganese (Mn), znc (Zn), and haravalant chrommum (Cr.⁴⁵), reported here as $\frac{0.00}{0.00}$.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Amual median and range, respectively. Calculated from malyses and epilorane operations. Department of Fubic Health, Division of Loboratorias, or United Stores Public Health, Service Amenal analyses made by United Stores. Quality of Merie Beach (ISSC): United Stores Department in Inscires, Suraeu of Reclamation (USBR): United Stores Public Health, Service Carefo Danner (SBCFCD): Memorylation Merie Danner of Meries. Danner and Part and Part in Inscires. Suraeu of Reclamation (USBR): United Stores Public Health, Service Data Merier (ISBCFCD): Memorylation Merier Danner of Meries. Danner and Merier Suraeu of Reclamation (USBR): United Stores (USPR); San Bernardino County Flood Public Merier (ISBCFCD): Memorylation Merier and Suraeu Counter of Merier Merier Merier (ISBCFC): Memorylation Merier and Stores (USPR); Sin de Counter of Merier Merier (ICDR): Counter of Merier Merier (ICDR): Counter of Merier Merier (ICDR): Control Counter of Merier Merier (ICDR): Conter of Stores (ICDR): Conter of Stores (ICDR): Conter of Stores (ICDR): Conter of Merier (ICDR): Conte

32505-0-H 6-61 200 2M

ANALYSES OF SURFACE WATER

NORTH COASTAL REGION (NO. 1)

				Spec					Min.	eral can	Minaral constituents	5	equive	equivalents per million	11 W 18	ion		Totol	ł				
Dote ond time	Discharge Temp in cfe in ^{of}	in of	Dissolved osygen	d conductance (micromhos	mhos pH	Calcium	Magns-	Sodium	Potos-	Carban-	Bicar-	Sul -	Chia-		Fluo-	Boron Silica		solved		Hordness es CoCO ₃	10°	bid - Coliform ^h ity MPN/mi	mi Anolyzed
P.S.T.			ppm %Sof	Sof of	ה וה כ	(Co)	(6w)	(P N)	UNIX	(co ₃)	(HCO ₃)	- 1		(^E ON)	(E)	(B) (SiO ₈)		n ppn	5	Totol P	N C M		_
										RUSSIA	N RIVER	NEAR HE	ALDSBUR	RUSSIAN RIVER NEAR HEALDSBURG (SIA. 9)	6)								
10-11-63 0920	260	62	8.2 84		237 237		2.20 ^c	7.0		0.00	$\frac{137}{2.25}$		6.9 0.19			0.2			12	110	0	8 62.	USGS
11-13-63 1410	605	59	9,8		245 8.0		2.220	7.4		0.00	$\frac{133}{2.18}$		6.8 0.19			0.4			13	111	2	15 62.	
12-13-63 1210	418	47	11.8 99		292 7.2 8.1		2.74 ^c	9.2		0.00	<u>162</u> 2.66		7.0			0.4			13	137	4	2 6 6	6.2 6.2
1-8-64 1215	1,560	50	11.9 105		192 7.3 8.6		1.720	7.3		4 0.13	$\frac{102}{1.67}$		5.0 0.14			0.3			16	86	0	30 230.	
2-5-64 1330	800		10.8 100		263 8.0	-16	2.480	8.8 0.38		0.00	$\frac{146}{2.39}$		4.5			0.3			13	124	4	10 23.	
3-11-64 1530	544	51	11.4 102		258 8.0	-	2.36 ^c	8.5 0.37		0.00	$\tfrac{140}{2.29}$		5.5 0.16			0.3			14	118	ر	3 23.	
4-15-64 1210	313	69	10.9 120		288 <u>8.4</u>	-	2.72 ^C	9.5		2 0.07	<u>158</u> 2.59		6.5			0.4			13	136	en	2 23.	e
5-12-64 1130	166	68	9.5 103		309 <u>8.0</u> 7.9	33	15 1.23	9.2	0.03	0.00	$\tfrac{171}{2.80}$	15 0.31	8.5	$\tfrac{1.0}{0.02}$	0.01	0.5 12	As = 0.00 ABS = 0.0 Pot = 0.00	169	12	144	4	1 13.	
6-3-64 1110	150	70	9.7 108		310 8.3	abar	2.880	7.4		2.07	$\frac{168}{2.75}$		8.0 0.23			0.5			10	144	<i>с</i> п	1 13.	
7-15-64 1045	195	78	8.7 105		262 7.8 8.3	mir	2.48c	8.8		4 0.13	$\frac{140}{2.29}$		4.4			0.5			13	124	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.62
8-11-64 1200	182	74	8.7 101		258 8.2 8.2	010	2.380	9.1		0.00	<u>148</u> 2.43		4.5			0.6			14	119	0	2 23.	
9-2-64 1215	180	70	8.8		257 8.1 7.9	1.35	1.03	8.8	0.03	0.00	<u>145</u> 2,38	$\frac{11}{0.23}$	4.8	$\frac{0.6}{0.01}$		0.5 12	$\frac{12}{PO_4} = 0.00$	142	14	119	0	999 1	6.2 6.2
	_																						
			-	_	_																		

a Field pH

b Laboratory pH.

Sum of calcium and magnesium in spm. U

Sum of calcum and magnesum in sum. Ino (Fa) aluminum (A1), serial (A3), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and heravelent chromium (Cr¹⁶), reported here os $\frac{0.0}{0.00}$ except as shown. -0

Derived fram conductivity vs TDS curves .

Determined by addition of analyzed constituents.

Gravimetric determination. æ

32305-0-8 6-61 200 SPO h Annual mation and range, respectively. Colculated from marky samples made by California Deportment of Public Mealth, Division of Laboratories, or United Stress Geological Stress, Department of Annual analysis and by United Stress Geological Stress, Department of the Intervit, Barces of Reclamation (USBR), United Stress Geological Stress, Department of the Intervit, Barces of Reclamation (USBR), United Stress Geological Stress, Department of Market and Public Mealth, Service (USPHS), San Bernadriae County Flood Commo District (SGCCCD), Bernatoriae of States Collariae (Stress), USCS), United Stress Department of the Intervit, Barces of Reclamation (USBR), United Stress, Public Mealth, Service (USPHS), San Bernadriae County Flood Commo District (SGCCCD), Bernator of States Collariae (Stress), Liss Angeles, Department of Mart and Public, Scy of Las Angeles, Department of Mart and Public, Market (LADPH), City of Lang Barch, Department of Mart and Public, Scy of Las Angeles, Department of Mart and Public, Sci y of Las Angeles, Department of Mart and Public, Market (LADPH), City of Lang Barch, Department of Mart and Public, Sci y of Las Angeles, Department of Mart and Public, Market (LADPH), City of Lang Barch, Department of Mart Resources (DRR), as indicated

ANALYSES OF SURFACE WATER TABLE D-2

NORTH COASTAL REGION (NO. 1)

																 1
		Anolyzed by I		USGS												
	-	hid - Coliform		2.3 6.2	23.	23. 6.2	23. 6.2	230. 23.	6.2	23.	620. 230.	23. 62.	23.	23.	2.3	
	- JnL -	- Add u		7	~	10	30	v	15	e	1	4	4	-	1	
		SO NE		0	0	0	0	-	5	0	0	2	5	0	0	
_		Total PPm		81	98	96	80	93	82	96	98	89	86	88	76	
_	Per-	sod -		13	15	17	15	17	16	17	18	16	15	16	15	
_	Total	solved sod- solids ium in ppm	 								135				120	
		Other constituents									A8S = 0.1 PO4 = 0.35				$\frac{7.0}{P04} \frac{AB}{P04} = 0.05$	
		Silica (SiOg)									9.4					
	lion	Boron (B)		0.1	0.4	0.4	0.3	0.1	0.2	0.3	0.4	0.3	0.3	0.4	0.4	
million	ar mi	Fluo- ride (F)									0.02					-
ports per million	squivolents per million	NI- Irots (NO ₃)	STA. 8a)								<u>1.9</u> 0.03				0.8	
2	squivo	Chio- rids (Ci)	 HOPLAND (STA.	4.9 0.14	<u>5.8</u> 0.16	6.7 0.19	4.5	<u>6.2</u> 0.17	5.8 0.16	7.0	0.28	3.5	3.0	3.5	3.6	-
,	<u> </u>	Sul - fots (SO ₆)	NEAR HO								9.0 0.19				9.0 0.19	-
	stifuents	Bicor- bonote (HCO ₃)	RUSSIAN RIVER NEAR	<u>100</u> 1.64	<u>105</u>	119	97 1.59	$\frac{112}{1.84}$	<u>97</u> 1.59	<u>115</u> 1.88	$\tfrac{120}{1.97}$	1.74	$\frac{102}{1.67}$	<u>108</u> 1.77	<u>116</u> 1.90	
	Minsrol constituents	Corbon~ ots (CO ₅)	RUSSIA	0.00	0.00	0.00	0,00	0.00	0.00	1 0.03	0.00	0.00	0.00	0.00	0.00	
	W	Potas- (K)									0.02				0.02	
		Sodium (No)		5.6	6.8	<u>8.9</u> 0.39	6.6	9.0 0.39	0.32	8.7	9.6	7.6	7.2	7.6	7.8	
		Mogns- sum (Mg)		<u>1.62</u>	<u>1.72</u> c	1.920	1.60 ^c	1.860	1.63 ^c	1.92 ^c	9.2 0.76	<u>1.78^c</u>	1.72 ^c	<u>1.76</u>	<u>7.7</u> 0.63	
		Colcium (Co)									$\frac{24}{1.20}$				<u>25</u> 1.25	
		T ala		7.6	7.7	7.8	7.2	7.3	7.7	7.6	7.4	$\frac{7.4}{7.4}$	$\frac{7.4}{7.6}$	8.0	7.6	
	Spacific	(micromhos (ot 25°C)		181	196	227	178	218	185	216	223	200	191	198	208	
Γ		ved en %Sot		96	96	06	101	87	97	116	98	101	105	104	16	
		Dissolvs d osygen ppm 9/oSof		9.2	6.3	10.5	11.6 1	9.6	11.3	11.0	9.5	10.1 101	8.6	1.6	8.5	-
				62	61	47	48	51	47	63	79	59	65	65	65	 -
		Discnorge Tsmp in cts in of		236	435	181	1,880	005	527	158	122	146	219	211	241	
		Dote ond time p.S.T.		10-10-63 1325	11-13-63 1230	12-13-63 1100	1-8-64 1115	2-5-64 1200	3-11-64 1400	4-15-64 1145	5-12-64 0930	6-3-64 0955	7-15-64 0900	8-11-64 1045	9-2-64 1030	

b Loboratory pH. a Field pH.

Sum of colcium and magnesium in epm. u

Sum of colcium and meganerum in spm. from (Fe), but with (A), response (Cu), lead (Pb), manyanese (Mn), zinc (Zn), and heravalent chramium (C⁺⁶), reported here $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

g Gravimetric determination.

h Annual median and range, respectively. Coloulared from analyses of duplicate monthly samples made by Columnia Department of Public Health, Division of Laboratories, or United Stores Public Health Sovies.

32305-0-8 6-61 200 240 Min and only serind by United States Geological Survey, Quolity of Wate Barch (USG); United States Department of the Interior, Survey of Reclamation (USBR); United States Team France arrives. Contal Destrict (SSESCE); Mansooliton Wate District of Southann Colifornia (MMD); Los Angales Department of Wate and Power (LADMP); City & Los Angales Department of Power of Reclamation (USBR); United States Poblic Madth Service (USPHS); State Barch (USC); Mansooliton Water of Mater and Power (LADMP); City & Los Angales Department of Power of Mater and Power (LADMP); City of Los Angales Department of Power of Reclamation (LADMP); Tammod Testing Laboratorias, Inc. (TLL); an Colifornia Doportment of Water Angales, Department of Power and Power (LADMP); City of Los Angales Department of Power and Testing Laboratorias, Inc. (TLL); an Colifornia Doportment of Water Angales, Department of Power and Testing Laboratorias, Inc. (TLL); an Colifornia Doportment of Water Angeles, Department of Power and Testing Laboratorias, Inc. (TLL); an Colifornia Doportment of Water And Mater Angeles, Department of Power and Testing Laboratorias, Inc. (TLL); an Colifornia Doportment of Water Angeles, Department of Power and Power (LADMP); Temmod Testing Laboratorias, Inc. (TLL); an Colifornia Doportment of Water And Power and Angeles, Department of Mater Angeles, Department of Angeles, Department of Angeles, Department of An

ANALYSES OF SURFACE WATER

NORTH COASTAL REGION (NO. 1)

					Canadia .					Min	Mineral constituents	natituan	-	equi	equivalents per million	per a	illion			Total			F	2	-
Dote ond time sampled P.S.T.	Dischorge Temp in cfs in oF	e Tea	Disse	lvs d pen %So	enductance (micromhos pH ot 25°C)		Calcium (Ca)	Mogne- sium (Mg)	Sodium (Na)	Potos- srum (K)	Potos- Corban- sium (CO ₃)	- Bicar - banate (HCD ₃)	Sul - fote (SO ₄)	Chia- rida (Ci)	Ni - trots (NO ₃)	Fluo- ride (F)	S I	Silica (SiO ₂)	Other constituents	solids solids in pom	tum -		A C SOUT	Hordness bid - Coliferm es CoCO ₃ 117 MPN/mi Tatol N.C. nppm ppm ppm	mi Anolyzed
									RUSSI	AN RIVE	RUSSIAN RIVER, EAST FORK,	FORK,	AL POTTER VALLES POWER	ER VALL	EX POWE	R HOUSE	s (STA.	10a)							
10-10-63 1445	217	62	8.4	68	178	7.7		1.620	<u>5.0</u> 0.22		0.00	99 1.62		4.8 0.14			0.1				12	81	•	6 23.	. USGS
11-13-63 1100	309	55	9.9	96	193	7.4		1.70 ^c	7.0		0.00	1.74		5.8 0.16			0.7				15	85	0	10 23	6.2 23.
12-13-63 0920	302	43	11.4	94	167	7.3		1.500	5.5		0.00	89		4.8			0.4				14	75	7	10 2	.62
1-8-64 0950	303	43	11.3	93	164	7.3		1.47 ^c	5.9		6 0.20	84		4.5			0.3				15	74	0	3	2.3
2-5-64 0930	299	43	11.9	96	136	7.9		1.22 ^c	5.3		0.00	72 1.18		2.8			0.2				16	61	7	40	2.3
3-11-64 1230	298	77	11.6	97	146	7.9		1.290	5.3		0.00	77 1.26		3.8 0.11			0.3				15	65	2	15	.62
4-15-64 0945	09	59	9.4	96	179	7.6		1.585	7.0		4 0.13	92 1.51		<u>5.2</u> 0.15			0.4		0		16	79	0	2 21	21. 2.3
5-12-64 0800	27	79	0-6	97	186	7.6	$\frac{22}{1.10}$	6.6 0.54	6.5 0.28	0.5	0.00	98 1.61	0.21	5.8 0.16	0.01	0.01	0.6	9.7	9.7 ABS = 0.0 PO4 = 0.00	108	15	82	7	1 20	50. 2.3
6-3-64 0845	28	64	9.1	86	182	7.9		1.600	7.0		0.00	97 1.59		3.5	10		0.5				16	80	0	5	6.2 .62
7-16-64 0930	200	68	9.1	103	168	7.9		<u>1.50^c</u>	5.6		0.00	90 1.48		2.6	10		0.3	- ,			14	75	1	۳ وا د	13. 2.3
8-11-64 0930	120	99	8.9	98	169	8.0 8.2		1.500	6.6		0.00	91 1.49		2.5	10		0.4		10 0		16	75	0	6	2.3
9-2-64 0910	130	59	8.7	89	172	8.0	<u>25</u> 1.25	3.8	0.26	0.01	0.00	93 1.52	- 2.0	2.9	8 0.01		0.4	6.6	$\frac{9.9}{P0_4}$ ABS = 0.01	103	14	78	3	10	2.3 6.2
		_																		_			-		

o Field pH.

b Laboratory pH.

c Sum of colcium and magnessum in spin d Iran (Fa), aluminum (AI), arsenic (As), cospare (Cu), Isad (Pb), manganese (Ma), zinc (Zn), and heraralent chromium (Cr⁴⁶), reparted here as ⁰00 except as shown.

a Derived from conductivity vs TDS curves.

Datemined by addition of analyzed constituents.

h. Amual median and range, respectively. Calculated fram analystea of duplicant amounds analystea of duplication and superstances of the intervent of Public Health, Division of Leboratorias, or United Stores Public Health Service. Amual median and range, respectively. Calculated fram analystea of USCS, United States Document of the Interve, Survey of Reclanation of Leboratorias, or United Stores Public Health Service. Cannol District (SBCFCD) Manual Stores deviced Sarvey. Quality of Ware Banch. (USCS), United Stores August, Department of Manual Survey and Stores Public Health Service. Cannol District (SBCFCD) Manual Stores deviced Sarvey. Cuality of States and States of Reclanation (USDR), United Stores Public Health Service. (USPRS), 550 Bernardine Occury Flood Public Health (LDPNH): Framiol Testing Leboratores, Imc. (TUL); or Galarian Department of Marcu of Xear and Public Kapath, Department of Public Health, LDPNH); City of Long Banch, Department of Public Health, LDPNH); Framiol Testing Leboratores, Imc. (TUL); or Galarian Department of Marcu of Xear and Public City of Las Angules, Department of Marcu of Xear Public Health, LUPNH); Framiol Testing Leboratores, Imc. (TUL); or Galarian Department of Marcu of Xear and Service (Low Service).

32305-04 6-41 200 SR

ANALYSES OF SURFACE WATER TABLE D-2

SAN FRANCISCO BAY REGION (NO. 2)

																		-1
		Anolyzed by 1			USGS												_	
	-	bid - Coliform Anolysed ity MPN/mi by i by b			7000.	62. 130.	62. 230.	23. 23.	62. 230.	500. 62.	62. 21.	6.2 62.	1.3 5.0	23. 6.2	230.	23. 62.		
	Tur-	- 14 44 14 14 14			5	80	~	15	10	20	-	-	e	<u>د</u>	n	г		
		N COS			4	4	3	0		6	0	0	0	0	0	0		
		total ppm			152	100	76	83	72	66	67	114	122	149	163	161		_
	Per-	eod - IUM			21	35	34	39	30	30	35	31	26	23	22	20		
_	Total	solved in ppm										212				232		
		Other constituents									00 0 -	$PO_4 = 0.25$			10 0	AS = 0.01 ASS = 0.2 PO ₄ = 0.45		
	ł	Silica (SiO ₂)										35				33		
1	ion	Boron (B)			0.3	0.7	0.4	0*6	1.0	0.7	0.8	0.7	0.6	0.4	0.4	0.4		
million	Ē	Fluo- rids (F)	_									0.4						
ports per million	equivolents par million	Ni- trote (ND ₃)		(STA. 72)								<u>5.3</u> 0.09				$\frac{1,4}{0,02}$		
00	aquivol	Chio- rids (CI)		HELENA (S	$\frac{21}{0,59}$	24	$\frac{14}{0_*39}$	21 0,59	12 0.34	<u>19</u> 0.54	25 0.71	$\frac{22}{0,62}$	22 0.62	<u>16</u> 0.45	$\frac{11}{0,31}$	$\frac{12}{0_*34}$		
1	£	Sul - fots (SO ₄)		sr.								18 0,37				$\frac{17}{0,35}$		
	51100113	Bicor- bonote (HCO ₃)		RIVER NEAR	<u>180</u> 2.95	$\frac{117}{1.92}$	$\frac{90}{1.48}$	<u>102</u> 1.67	87 1.43	110	121 1.98	$\frac{139}{2 \cdot 28}$	$\frac{151}{2*47}$	<u>189</u> <u>3.10</u>	208 3.41	207 3.39		
	8101 CON	Corbon- ote (CO ₃)		NAPA RI	0*00	0,00	0 <u>*00</u>	0*00	0*00	0,00	0*00	0*00	0*00	0,00	0,00	0,00		
	C M	Potos- sum (K)										$\frac{2.8}{0.07}$				2 .5 0,06		
		Sodium (No)			$\frac{19}{0,83}$	$\frac{25}{1,09}$	18 0,78	$\frac{24}{1,04}$	$\frac{14}{0,61}$	19 0.83	$\frac{24}{1.04}$	24 1.04	$\frac{20}{0,87}$	$\frac{20}{0*87}$	$\frac{21}{0.91}$	$\frac{19}{0.83}$		
		Mogna- mura (Mg)			<u>3.04</u> c	2.00c	1.52c	<u>1,66</u> c	1.44c	1.98c	1.94c	$\frac{14}{1,13}$	2.44c	2,98c	<u>3.26</u> c	$\frac{18}{1.52}$		
		Colcium (Co)										23 1.15				$\frac{34}{1,70}$		
-		I elo			7.0 7.4	7.0 8.1	$\frac{7.1}{7.3}$	7.8 7.8	7.2 7.8	7.2 7.5	7 <u>,2</u>	7.8	8.1 8.1	$\frac{7,1}{7,6}$	$\frac{6,8}{8,1}$	6.8 7.4		
	pscific	(micromhos of 25°C)			400	308	238	274	208	270	315	335	336	372	388	387		
+	S	gen (mi			43	79	73	92	87	100	114	146	157	77	6,7	~		
		Diss			4.1	7.5	8,1	10,4	9.3	11,0	9.8	12.5	13,8	6.5	0.6	0.5		
ŀ		de u			64	64	47	50	54	52	73	73	71	75	69	66		
		Discnorge Tamp in cfs in oF			4,0	7.0	18	11	48	21	9,1	4.3	2.8	0.2	0.6	0.2		
		Dote and time sompled P.S.T.			10-11-63 1030	11-13-63 1530	12-1 3- 63 1330	1-8-64 1355	2-5-64 1910	3-11-64 1720	4-15-64 1530	5-12-64 1415	6-3-64 1325	7-15-64 1200	8-11-64 1345	9-2-64 1415		

b Loborotory pH.

c Sum of colcium and mognesium in epm.

Sum of calcium and magnetium in epm. Iron (Fe), oluminum (Al), respected here as $\frac{0.0}{0.00}$ except as shown.

e Derived from conductivity vs TDS curves

Datemined by addition of analyzed constituents

Gravimetric determination.

Annual median and mage, resectively. Calculated fram analyses of diplicate monthly samples made by Calciania Dopartment of Public Health, Division of Lobaratorias, or United Storkes Public Health Service. Mineral analyses made by United States Geological Survey, Quality of Rotes Banaruton in the Interves, Survey of Reclamation (USBR), United Storkes Public Health, Service. General District (SBCCC), Managines de sources of displications (MPD), Las Angeles, Dopartment of Ware and Power (LDDM); City of Los Angeles, Dopartment of Public Health (LDDM); Entring Leaderatore, Inc. (TTL); or Galdiania (Maure Jones Downent of Ware and Power (LDDM); City of Los Angeles, Dopartment of Public Health, Scrive (LDDM); City of Long Baach, Dopartment of Public Health (LDDM); Entring Leaderatore, Inc. (TTL); or Galdiania (Maure Rasources (DMR); as indicated

32505-0-8 6-61 200 SPO

ANALYSES OF SURFACE WATER SAN FRANCISCO BAY REGION (NO. 2)

Minarol constituants Sodium Potos- Corbon- Bicor-	Minardi constituante Sodium Potos-Corbon-Bicor-	aral constituants Corbon- Bicor-	aral constituants Corbon- Bicor-	constituants in m- Bicor- Sul-	Sul-		aquive Chla-	-	r milion	on Silica		Total Per- dis- solved sod -	ert Hor ant Hor	dunsa CacOs	Mardnass Tur- ea CacOs Ity MPN/mi by 1	m Analyz by 1
pom %Sat at 25°C)	(Ca) (Mg)	(Mg) (PM	(o)	500 500	s) (HCO _S)	(SO4)	(CI)	(NO ₃)	(F)	(B) (SiO ₂)	Other constituants	mod ut	Toto	Total N.C. n	nộm	
		VI	TAMONT C	REEK AT	ALTAMONT	TURNOUT	LINOS 40	IDA YAR H	EDUCT	ALTANONT CREEK AT ALTANONT TURNOUT OF SOUTH BAY AQUEDUCT (STA. 201)						
		2.34c				38 0.79	75 2.12				ABS = 0,00	292	117			DAR
		2.38c				40 0,83	77 2.17				Ac = 0.00 ABS = 0.00 Cu = 0.00 Zn = 0.00	291	119			
		2.34c				53 1.50	79 2.23				A8S = 0,00	282	117			
-		6.31c 19.79	55 .79			<u>306</u> 6, 37	$\frac{418}{11*79}$				ABS = 0,00	1550	316			
		3.66c				$\frac{1.04}{2,16}$	$\frac{122}{3_{*}44}$					453	183			
		3,08c				65 1,35	91 2.57				ABS = 0,00	352	154			
		4 <u>,88</u> c				$\frac{91}{1,89}$	$\frac{252}{7.11}$				ABS = 0,00	935	244			
		<u>2,10</u> c				$\frac{33}{0,69}$	54 1,52				ABS = 0,00	216	105			
		<u>1,72</u> c				$\frac{24}{0*50}$	35 0,99				ABS = 0,00	178	86			
		1.72c				$\frac{23}{0,48}$	<u>55</u> I.555				ABS = 0,00	214	86			
		2.20c				$\frac{32}{0*67}$	<u>107</u> 3.02				ABS = 0.00	313	110			
	_															
-																

o Field pH.

c Sum of colcium and magnesium in epm. b Labaratory pH.

Sum al colorium and meganasum in eprime in eprime terms (Ha), rearganese (Hn), zinc (Zn), and hererolomi chramium (Cr⁺⁶), reported here as $\frac{0.0}{0.00}$ escept as sharm.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Amuel median and range, raspectively. Calculated fram endyses of displication and by Colifornio Department of Public Health, Division of Laboratours, or United Stores Public Health Service. Marrent analyses and by United Stores, Geological Stores, Dacimana di Ha, Intrano, Suceo of Reclamona (USBR). United Stores, Public Health, Service (USPHS), San Bennadue, Cauny Flood Caread District 1986-FCD; Marrentation Mere Davier, Coliforna (MMD); Lite Margies, Disportand et Alenaro, Suceo of Reclamona (USBR). United Stores, Public Health, Service (USPHS), San Bennadue, Cauny Flood Public Health, EDPR); Termoid Tstore, di Scathan Colimon (MMD); Lite Margies, Dacement of Meru, Guardo Davier, Davartand et Alenaro, Davartande, Cauny Flood Public Health, EDPR); Termoid Tstore, Laborations, Lee (TTL), ya Colimon Oraentment of Meru of Beach, Oseantment of

22205-648 6-61 200 3P0

ANALYSES OF SURFACE WATER TABLE D-2

SAN FRANCISCO BAY REGION (NO. 2)

		by i by	Τ		SDSU													
	j.	N C S			38	37	22	31	54	47	42	42	47	19	69	69	23	
		es CoCO ₃			184	180	152	171	256	242	183	196	196	294	180	170	146	
					43	44	45	43	40	37	40	44	43	34	44	44	30	
		solved solids mgg n			388 ⁶	3788	336 ⁸	3598	4998	450 ⁸	390 ⁸	4248	412 ⁸	504 ⁸	402 ⁸	3886	255 ⁸	
		Other constituents			Fe = 0.01 Color = 2	Fe = 0.01 Color = 6	Fe = 0.01 Color = 2	Fe = 0.01 Color = 5	Fe = 0.00 Color = 10	Fe = 0,00 Color = 15	Fe = 0.04 Color = 30	Fe = 0.01 Color = 15	Fe = 0.01 Color = 10	5.8 Fe = 0.00 Color = 10	Fe = 0.01 Color = 5	Fe = 0.00 Color = 5	Fe = 0.04 Color = 30	
		Silico (SiOg)			20	18	18	15	12	12	12	[]	=		17	<u>16</u>	15	
C	uoi liou	Boron (B)			0*4	0.4	0.4	0.3	0*0	5.0	0.3	0.3	0.3	0.5	0*2	0.44	0.3	
millio	Dar D	Fluo- ride (F)			0.3	0.3	0.3	0.0	0.1	0.2	0.1	0.1	0.00	0.00	0.2 0.01	0.1	$\frac{0.2}{0.01}$	
	aquivalents	N1- Trots (NO ₃)		(STA. 73)	4.0 0.06	3.4	3.0 0.05	$\frac{2.1}{0.03}$	$\frac{6.4}{0.10}$	0,10	$\frac{17}{0_*27}$	$\frac{7,8}{0,13}$	$\frac{8.4}{0.14}$	$\frac{3,4}{0,05}$	6.5 0.10	4.8 0.08	<u>5.6</u>	
٩	A IND B	Chia~ rids (Ci)		NILES	92 2.60	96 2.71	$\frac{81}{2,29}$	75	$\frac{101}{2,85}$	83 2.34	74	88 2.48	86 2.43	78 2,20	87 2.45	87 2.45	25 0.71	
Ē		Sul - fots (SO ₄)		NEAR	$\frac{51}{1*06}$	$\frac{43}{0*90}$	45 0 <u>,94</u>	$\frac{49}{1,02}$	$\frac{73}{1.52}$	$\frac{61}{1,27}$	54 1.12	$\frac{61}{1*27}$	$\frac{65}{1,35}$	88 1.83	53 1,10	65 1.35	42 0.87	
stituent		Bicor- bonots (HCO _S)		ALAMEDA CREEK	<u>178</u> 2.92	$\frac{174}{2*85}$	158	$\frac{171}{2*80}$	246 4.03	238 3.90	$\frac{172}{2,82}$	<u>188</u> 3,08	<u>182</u> 2.98	$\frac{284}{4*65}$	$\tfrac{160}{2*62}$	$\frac{148}{2,43}$	$\frac{150}{2.46}$	
Minsrol constituents		Carbon 019 (CO ₅)		ALAM	0*00	0,00	0*00	0*00	0 0*00	0,000	0.00	0*00	0.00	0,00	0,00	0.00	0,00	
Min		Potos- sium (K)	Γ		4.4 0.11	5.2 0.13	$\frac{4_{*}2}{0_{*}11}$	$\frac{3.4}{0.09}$	5.1 0.13	$\frac{5,0}{0,13}$	$\frac{8 \sqrt{7}}{0 \sqrt{22}}$	5.1 0.13	<u>5.4</u> 0.14	$\frac{4,9}{0,13}$	$\frac{4.1}{0.10}$	3.0 0.08	$\frac{3,5}{0,09}$	
		Sodium (No)			$\frac{67}{2*91}$	67 2.91	<u>59</u> 2.57	62 2,70	80 3.48	68 2 . 96	60 2.61	73	70 3.04	70 3.04	66 2.87	64 2.,78	$\tfrac{29}{1,26}$	
		-sugow (pM)			22 1.78	$\frac{20}{1.65}$	$\frac{18}{1*44}$	$\frac{18}{1,52}$	28 2.33	$\frac{27}{2.20}$	$\frac{20}{1.66}$	$\frac{20}{1.67}$	$\frac{21}{1_*72}$	<u>33</u> 2.69	<u>19</u> 1.55	<u>19</u> 1,55	$\frac{15}{1.27}$	
		Catcium (Co)			<u>38</u> 1,90	$\frac{39}{1,95}$	$\frac{32}{1,60}$	<u>38</u> 1.90	<u>56</u> 2.79	53 2.64	40 2.00	45 2.25	$\frac{44}{2,20}$	64 3.19	$\frac{41}{2*05}$	<u>37</u> 1.85	$\frac{33}{1,65}$	
		I alo			8.0	1.8	8.2	7.5	7.8	7.8	7.3	7.7	7.7	8.0	8.0	8.2	<u>6*2</u>	
	Spacific	(micromhos f ot 25°C)			674	189	593	619	849	766	654	721	716	883	678	658	410	
																		-
		Disso 0%y DDT													_			_
		and ci																
		Dischorge Temp In cfs in DF Mean			25	19	25	15	б	26	15	6	6	9	38	23	270	
		somplad P S.T.			10/1-10/63	10/11-19/63	10/23-31/63	11/1-7/63	11/8-13/63	11/14-20/63	11/21-30/63	12/1-10/63	12/13-23/63	12/26-31/63	1/1-9/64	1/10-20/64	1/21-31/64	

b Loborotory pH a Field pH

c Sum of calcium and magnesium in spm.

c Sum of colorum and magnessium in spin. d Iran (F.), oluminum (AI), orsenic (As), copour (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexarelent chromium (Cr¹⁶), reported here as ^{0,0}/₀0 except as shown.

Derived from conductivity vs TDS curves

Datemined by addition of analyzed constituents

Gravimatric determination

Amuel median and range, respectively. Calculated from analyses of duplicate monthly samples made by Califorme Dopartment of Podule Health, Durusan of Loboratories, or United Stores Public Health Service

i Mineral analyses made by United States Geological Survey, Duality of Mare Branch (USGS), United States Mare Survey, Duality of Mare Branch (USGS), United States States Destinance (USMS), United States Problet March Structe (USMS) ; Son Bernadina County Flood Cannel District (SBCFCD), Marinapolitan Water District of Scathan Galdana (MAD), Los Angales, Dapatiment of Nau and Power (LADMP), City of Los Angales, Department of Backs, Department of Backs, Department of March (LBDPH), Tennian Lating Laberba), Exit Canada Backs, Department of Public Health (LBDPH), Temman Testing Laboratores, Inc. (TTL), or California Department of Water Resources (DMR), os indicated

045 002 10-0 HO-5052E

ANALYSES OF SURFACE WATER SAMP FLANCISCO BAY RECTON (NO. 2)

Andlyzed by 1 Cali form^h MPN/mí Hardnese bid - C Totol N C DDM DDM 51 73 71 85 58 67 63 59 58 38 31 31 248 228 304 159 143 261 252 ten - mi 30 34 42 45 37 38 40 35 37 39 37 38 Totel ale-solved solvds in ppm 4138 412⁸ 5 5 0 K 888 4938 1708 4288 806 4528 4828 3028 290⁸ 2888 Other constituents = 0.02 = 15 = 0,00 = 5 = 0.00 = 5 = 0.00 = 4 = 0,01 = 15 = 0,02 = 10 = 0.01 = 7 = 0.01 = 7 = 0.01 = 6 = 0.01 = 5 • 0,02 = 0,19 - 15 Fe Fe Color Fe Color Fe Lolor Fe Color e. <u>.</u> Silico (SiO₀) 12 13 91 18 2 2 의 12 21 21 14 Boran (B) 0.5 0.7 0.6 0.6 0.8 9.0 0.6 0.3 0.3 0.3 equivalents per militon ports per million 0.02 0.3 0.2 0.01 0.01 Fluo-ride (F) ALAMEDA CREEK NEAR NILES (STA. 73) 1101e 4.7 8.6 5.5 0.09 6.1 7.5 6.1 0.10 2.6 5.7 4.9 0.08 4.0 3.4 4.4 5.5 51 1.44 94 107 116 3.27 102 77 99 2.79 $\frac{91}{2.57}$ 77 95 64 58 1.64 58 Chio-ride (Ci) 91 1,89 87 87 71 75 65 49 41 Sul -fot (SO₄) 76 88 97 2.02 80 37 ŝ Mineral canstifuents Bicar -6anate (HCO₅) 249 3.61 282 4.62 3.15 3.13 3.87 175 216 148 147 136 159 Carbon-ate (CO₅) 10 0.00 0.00 0.00 0.00 0.00 0.00 0*00 0.00 $\frac{10}{0,33}$ 0,00 0.00 0.00 Potas-sum (K) 4.7 3.8 3.8 5.4 3.9 3.3 3.6 3.4 3.0 3.3 4.9 0.13 3.5 2.6 Sodium (No) 76 70 2.04 4.8 41 50 74 78 82 72 60 2.61 66 2.87 66 43 Magne. 1100 (Mg) 2.37 34 2.11 25 2.24 32 30 2.43 23 1.89 2.42 2.35 1.53 1.34 16.1 Colcium (Co) <u>52</u> 2.59 46 34 56 57 33 34 66 3.29 49 45 452.25 54 31 Specific conductance (micramhas at 250 C) a b 8.6 8.2 8.2 8.0 8.2 7.9 6.1 7.8 8.0 8.5 7.8 671 827 622 916 828 261 705 842 718 802 541 498 ppm % Sot Diesotved osygen Discharge Temp in cfs in GF Mean 12 35 20 12 23 21 44 41 43 12 4/20-30/64 5/11-20/64 5/21-30/64 2/16-29/64 Date and time P S T 3/1-13/64 4/9-19/64 5/1-10/64 6/1-10/64 2/9-15/64 4/1-8/64 2/1-8/64

b Laboratary pH

0.0 except as shawn. tion (Fe), aluminum (A1), arsenic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr¹⁹), reparted here as Sum of calcium and magnesium in spm.

Determined by addition of analyzed constituents Derived fram conductivity vs TDS curves

Gravimetric determination 0

h Amual median and range, respectively. Calculated from analyses of dusticate monthly samples made by Califormia Dapanement of Public Mesthy. Durison of Labaratories, or Unived Storee Public Mesthy Service

Amend analyses made by United States Geological Survey, Quality of Water Branch (USGS), United States Department of the Interior, Bureavo af Reclamation (USBR), United States Tables Table Tables Tab

2 8

a Field aM

ANALYSES OF SURFACE WATER

SAN FRANCISCO BAY REGION (NO. 2)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Speech conductored (micromhas PH Calcium Mogna- a) 2250C) b b C(Ca) (Wa)			70	ACCERTANCE ARE	our milion		Total -			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	reconductant PH (micreminas i of 25°C) b c (Co) (Mg) (Mg)							-910-		ut - Colutore	Andres
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Potas- sium (K)	1		Ni - trate (NO ₃)	Baron (B)	Other canstituents	solved solids in pom	N CO3	PDD mpN/mi	by 1
1000 1000 110 110 11000 11000 11000											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			ALAMEDA CREEK	K NEAR NILES	S (STA. 73)				 		_
	$\frac{30}{7.9}$ $\frac{30}{1.50}$	3.2 0.08			$\frac{2.9}{0.05}$				 		nsgs
8.8 9.4 6.6 $\frac{8.0}{6.12}$ $\frac{7}{3.726}$ $\frac{7}{2.96}$ $\frac{9.0}{2.05}$ $\frac{9.0}{2.$	8.0 29 1.45	$\frac{2_{*}9}{0_{*}07}$			<u>3.2</u> 0.05				 		
0.6 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td> </td><td></td><td></td></t<>								_	 		
			ALAMEDA CREER	K NEAR NILES	S (STA, 73)			_	 		
	94 646 8.0	•		2.6	4 65	0.2		4	 33	45 23.	USGS
	100 692 7 <u>•5</u>			2.2	20	0*0		m	 77	6.2 15 23.	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	106.3 726 8.3			81	8	0.5	3 U	4	 48	10 2.3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	99 620 7 <u>*9</u>			2	8 76	0.5	10	7	 77	60 23 .	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	93 780 8.2 8.5			11	2 75	0.6	ABS = 0.0		 	15 23*	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	103 842 8 <u>*2</u>	78 <u>3,39</u>		3.4	2 44	0.6	A8S = 0.0	7	 89	30 13.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 779 8.4			2+5	<u>3</u>	0.6	A85 = 0,1	7	 	20 23.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101 904 8 <u>*2</u> 72 3.59	$\frac{2.3}{0.06}$			<u>3.1</u> 0.05		$\frac{8_{*1}}{204} \frac{1}{200} = 0.00$		 	8 2.3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	98 448 7 <u>7</u> 9	42 1.83		1.1	1 44	0.3		7	 	55 620 .	
	.5 95 407 8.3 2.64c	$\frac{34}{1.48}$		1.	<u>13</u>	0.2	A8S = 0,2		 18	200 62	

a Field pH

b Labaratary pH.

c Sam of calcium and magnessum in epm. d Iran (Fe), olumnum (AI), arsenic (As), capper (Cu), lead (Pb), menganese (Mn), and (2n), and hexorelent chramium (Cr⁺⁶), reported here as 0.00 0.00

e Derived fram canductivity vs TDS curves

Determined by addition of analyzed constituents.

9 Gravimetric determination.

Amal median and range, respectively. Calculated from analyses and eby California Department of Dublic Health, Division at Laboratories, at United Strates Public Health, Service Ameral analyses made by United Strates Geological Survey, Quality of Mater Baceh (USGS), United Strates Ameral and health Service (USPHS), Land Strates Geological Survey, Quality of Mater Strates Geological Survey, Quality of Nater Strates (USPHS), Survey Strates Geological Survey, Quality of Nater Strates Geological Survey, Quality of Nater Strates (Nater Strates Geological Survey, Quality of Nater Strates Geological Survey, Quality of Nater Strates (Nater Strates Strates), Survey Strates Geological Survey, Quality of Nater Strates Geological Survey, Quality of Nater Strates (Nater Strates), Survey, Quality of Nater Strates (Nater Strates), Survey, Quality of California Department of Nater Strates (David Survey, Su

32505-40-41 6-61 200 SPD

ANALYSES OF SURFACE WATER

SAN FRANCISCO BAY REGION (NO. 2)

	Analyzed by 1				USGS					uses								
\vdash	torm ^h A			_	130.	23. 62.												
-	Hordnese bid - Coliform ee CoCOs 119 MPN/ml				80 2	20					4	2	s	15		~	0	
-	0	U E G			26	41 2				60	85	59	28	41 1	29	33	30	26
	Hordna ee Co(Totof			133	143				418	360	289	222	239	259	294	269	256
	tent - poe				43	67				31	54	27	20	21	22	24	32	31
Totel	eolved solids	m apm				347										438		
	Other constituents				ABS = 0.3	As = 0.00 Ass = 0.2 $Po_4 = 0.60$										ABS = 0.00 PO4 = 0.00		
Ι,	on Silico	20			~~i	3				@j			41	 91	91	8	91	
lion milion	o- Boron		_		0.2	0.2				1.8	1.8	1.0	0.4	0.6	0*6	0,3 0,8 0,02	1.0	1-1
porte per milion volents per mil	Fluor			73)		15		. 71)										
porte per milion equivalents per milion		(^s 0N)		ALAMEDA CRFEK NEAR NTLES (STA. 73)	20	0.01 0.01		AORE (ST		212		_12	-		00	5 0.4 98 0.01	16	017
100	<u> </u>	-		R NTLES	65 1.83	106 2.99		LIVERM		105 2.96	108 3.05	48 1.35	$\frac{18}{0,51}$	26 0+73	24 0,68	35 0,98	$\frac{21}{0.59}$	50 1.41
6	Sul -			PEK NEA		<u>38</u> 0.79		LE NEAR								76		
atituen	Bicor-	(HCO3		EDA CRF	$\frac{131}{2.15}$	$\frac{124}{2.03}$		EL VALI		436	348	<u>276</u> 4.52	<u>216</u> 3.54	230	<u>264</u> 4.33	$\frac{318}{5,21}$	<u>286</u> 4.69	<u>268</u> 4, 39
Minarol constituents	Corbon-	(co _s)		ALAM	0*00	0*00		ARROYO DEL VALLE NEAR LIVERMORE (STA. 71)		$\frac{0}{0*00}$	$\frac{0}{0*00}$	$\frac{2}{0,07}$	$\frac{10}{0,33}$	$\frac{6}{0_{*}20}$	8 0 <u>*27</u>	$\frac{0}{0*00}$	$\frac{3}{0.10}$	6 0,20
Wini	Potos-	8				2 <u>.8</u> 0.07	_	4 •								$\frac{1+9}{0+05}$		
	Sodium	(0 N)			46 2,00	65 2+83				3.83	<u>196</u> 8.53	50 2.18	$\frac{25}{1*09}$	<u>29</u> 1.26	34 1,48	$\frac{44}{1.91}$	58 2.52	60 2,61
	Mogne-	(6W)			<u>2,66</u> c	$\frac{17}{1,36}$				8,36c	7 <u>,20</u> c	5.78c	4.44c	4.78c	<u>5.18</u> c	$\frac{34}{2*77}$	5,38c	5.12c
	Colcium	(Co)				30 1,50										62 3.09		
	Ţ	ماه			$\frac{8.1}{8.2}$	8.2 8.1				$\frac{8.0}{8.1}$	$\frac{8_*2}{7_*4}$	$\frac{8,2}{8,3}$	$\frac{8_{*}2}{8_{*}5}$	$\frac{7_{*}9}{8_{*}4}$	8.2 8.4	8.2 8.2	8.3 8.3	8.4 8.4
Cassifia	Conductance (micromhos	5			483	638				1110	1060	752	506	557	615	694	700	213
	2 1	ppm %Sof			105	115				74	62	104	98	106	104	104	121	105
	Dieso	E dd			8.6	10.6				7.5	7.3	11.8	10.4	10,8	10.2	10.5	11.1	8,9
	Tamp in oF				79	68				58	46	49	54	57	60	60	66	74
	Dischorgs Tamp Dissolved in cfs in OF osygen				41	31			Ponded	0.1	0*1	1.4	15	4°9	2.2	0.8	0.4	0.4
	Dote ond time enmoled	P.S.T.			8-5-64 1445	9-2-64 1430			10-4-63 2230	11~5-63 1530	12-5-63 2100	1-10-64 1130	2-3=64 1550	3-2-64 1330	4-10-64 1030	5-4-64 1045	6-10-64 1830	7=8-64 1900

o Freld pH.

b Labaratary pH

Sum of calcium and magnesium in epm.

Sum of colcium and magnetum in spin. Iron (Fa), orbit here or $\frac{0.0}{200}$ except (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexaralent chramium (Cr¹⁶), reported here as $\frac{0.0}{200}$ except as shown.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents

h. Amual median on fange, resectively. Calculated from analyses of dealicate monthy samples made by California Department of Public Health, Division of Laboratories, or United Stores, Public Health, Sarriea Toward and Public Stores Geological Survey. Quality of Yanes Boords. (1965): United Stores Department of the Intrans, Gueran of the Intrans, United Stores, Public Health, Sarriea Cannal District (SBCFCD); Manated Stores, Quality of Yanes Boords. (1965): United Stores Defaultic Health, Sarriea (USPHS); 55m Bennadine County Flood Public Realth (LUPPH); Friemiol Teatrong Laboratore, Inc. (TTL), or chlanne Ousament of Mas Reason (LaborP); City of Las Angeles, Desartment of Laboratoria, Desartment of Public Realth (LUPPH); Friemiol Teatrong Laboratore, Inc. (TTL), or chlanne Desartment of Mas, a indicated.

32505-D-H 6-61 200 3R

ANALYSES OF SURFACE WATER

SAN FRANCISCO BAY REGION (NO. 2)

		bid - Celiform Anolyzed 114 MPN/mi by 1 n opm					DWR	Field determi- netions	DWR	Field determi- netione	DAR	Field determi- netions	DWR	Field determi- netions	
	-	MPN/mi													
	Tur-	- pq 4													
		Hordness t es CoCO ₅ Total N.C. ppm ppm	 _			 	63		-				80	06	
_	:	Tota pom				 	75	80	3 79	85	81	80		6	_
	Par-	solved set solved set in ppm ium	 			 	141		1 38		38				
_	14	a pilos	 			 	153		131		159		156		
		Other constituents									Fe = 0.00				
1	l	Silice (SiO ₂)					19				20				
	u	Boron (B)					0.02		0"0		0*04		0.2		
millia	per mi	Fluo- rids (F)	_ 11)				0.4 0.02				0.3				
ports psr million	lanta	Ni- frote (NO ₃)	STA.			52)	0.2 0.00		$\frac{1.2}{0.02}$		0.4 0.01				
90	squivolants per million	Chio- rids (CI)	ARROYO DEL VALLE NEAR LIVERMORE (STA. 71)			 DENNISTON CREEK (STA. 252)	<u>31</u> 0.87	40	32 0,90	40	<u>33</u> 0,93	40		40	
	<u> </u>	Sul - fats (SOg)	NEAR L			I CREEK	$\frac{8.6}{0.18}$		$\frac{10}{0.21}$		9,5 0,20				
	111080118	Bicar- bonate (HCO ₃)	T VALLE			NOTS INNE	89 1.46		88 1.44		89 1,46				
	Mineral constituents	Carbon- ete (CO _S)	RROYO 01			īq	0,00		0,00		0,00				
		Potos- sium (K)	< -				0.8 0.02		$\frac{0,8}{0,02}$		0.6 0.02				
		Sodium (Na)					$\frac{24}{1,04}$		$\frac{23}{1,00}$		$\frac{23}{1,00}$				
		-engow mure (gM)					7 <u>*9</u>		6.4 0.53		6,9 0,57				
		Colcium (Co)					17 0,85		$\frac{21}{1,05}$		$\frac{21}{1.05}$				
		In In					7 <u>*8</u> 7 <u>*7</u>		<u>6.7</u>		7.2		7.3		
	Specific	(micremhos PH at 25°C) a					261	260	266	257	275	265	273	265	
F		ved en %Sat													
		Dissolved osygen ppm %Sof					9.8		9,1		10.9		10.9		
		Temp in oF					70		58		47		46		
		Discharge Temp in cfs in oF		Fooded	Ponded		2		2.25		1.5		2.00		
		Dots and time eempled P.S.T.		8-5-64 1700	9-1-64 1150		10-8-63 1535	10-17-63 1330	11-14-63 1200	11-27-63	12-12-63 1455	12-31-63 1000	1-13-64 1100	1-27-64 0941	

b Loboratory pH. o Field pH.

 ϵ Sum of calcium and mograssium in spin. d flow (Fe), aluminum (Al), oriented here δ_{00} , load (Pb), mangarese (Mn), zinc (Zn), and herevalent chromium (Ci⁺⁶), reported here δ_{00}^{-0} except as shown. c Sum of celcium and magnasium in epm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

32505-0-H 6-61 200 3P0 Amed male ond coop, respectively. Calculated from molyses of depicter manity samples made by Californio Department at Public Haulth, Division at Laboratories, or United Stores Public Haulth Service. Mineral analyses made by United Stores Geological Survey, Quality of Wares Boach (USS): United Stores Department of Inclusions: Survey California Stores Public Haulth, Event (USPHS): Sin Bernordian County Flood Cared District 1886-FCD; Marraphilam Meter Durity of Wares Department of Mater and Pean (LDDM); City of Los Angeles, Department of Public Haulth (LDDM); Emend Testing Laboratores, Inc. (TTL): A calified Stores Department of Wares and Pean (LDDM); City of Los Angeles, Department of Public Haulth (LDDM); Emend Testing Laboratores, Inc. (TTL): A calified Stores Department of Wares and Pean (LDDM); City of Los Apacity and Wares and Pean (LDDM); City of Los Apacita at of Pault Haulth, LDDM); Emend Testing Laboratores, Inc. (TTL): A calified Stores Department of Paulte Haulth (LDDM); Emend Testing Laboratores, Inc. (TTL): A calified Stores Department of Wares and Pean (LDDM); City of Los Apacita at of Pault Haulth); Extra Laboratores, Inc. (TTL): A calified Stores Department of Wares and Pean (LDDM); Extra Department of Paulte Haulth, Extra Laboratores, Inc. (TTL): A calified Stores Department of Wares and Pean (LDDM); Extra Department of Wares at Department of Wares at Department of Wares at DM); Extra Department of Wares at Department of Wares at DM); Extra DM); Extra DM); Extra DM); Extra DM (LDDM); Extra DM (LDDM); Extra DM); Extra DM (LDM); Extra DM (LDM)

WA1ER	_
	• 2
ń	(N0.
	REGION
	BAY
353 01	FRANCISCO
AINALI JES	SAN

		Analyzed by 1			_	DWR	Field determi-	netione	DWR	Field determi-	netione	DWR	Field determi~	ations	DWR	_		DAR				
		Hordnese bid - Coliform es CaCOs ity MPN/mi											ц, Ф									
	Tur-	hid - A							6.5			8.0			3.25		_					
		aco _s	Totol N.C. PPm ppm			13				_								17	41	47	87	
L			Totol			79	80		78	85		84	72		82			302	290	302	310	ļ
	Per-	1000	F			39	_											18	18	18	18	
	Total	abilde abilde	-			153			156		_	162			170			418	380	424	445	
		Other constituents				ABS = 0,0						ABS = 0.0								Fe = 0.00		
	l	Silico	il .				_											24		21	19	
	Ilion	Boron				0*0			0*0			0.0			0*0			0.08	0.1	0,09	0.1	
milio	E Led	Fluo-	(F)															0.4 0.02		0.4	0.44 0.02	
ports per million	equivalents per million	Ni-	(⁸ 0N)	100	(70	$\frac{4_*3}{0_*07}$											57)	$\frac{0.1}{0.00}$	0.9 0.01	$\frac{0.2}{0.00}$	0.4 0.01	
0	a quive	Chio-	(CI)	DENDITION CORP. (CTA. 200)	a "virc)	<u>32</u> 0,90	36			36			32				PURISIMA CREEK (STA. 257)	26 0,73	23	26 0.73	26 0.73	
	•	Sul - tote		10000	CNEEN	$\frac{12}{0_*25}$											CREEK	72 1.50	67 1,39	74	76 1.58	
		Bicar - bonate	(HCO ₃)	NOT STOR		$\frac{81}{1,33}$											NRISIMA	<u>318</u> 5.21	<u>304</u> 4,98	311 5,10	<u>320</u> 5,24	
Mineral Annual Constant		Carbon-	(co _s)		2	0,00											щ -	0.00	0,00	0*00	0.00	
- H	E	Potos-	ŝ			0.6 0.02										_		<u>3.4</u> 0.09	$\frac{3.1}{0.08}$	2.5 0.06	2.4 0.06	
		Sodium				$\frac{24}{1,04}$	_											<u>30</u> 1.30	<u>29</u> 1.26	<u>31</u> 1,35	<u>32</u> 1 <u>,39</u>	
		Magne-	(6M)			5.8 0.48												$\frac{22}{1_*84}$	<u>19</u> <u>1.55</u>	20 1,64	22 1,80	
		Coleium				$\frac{22}{1.10}$												84 4.19	<u>85</u> 4.24	88 4.39	88	
		i e	مە			7.5			7.5						7.3			8.1 8.3	8.2	8.1 8.2	8.2 8.2	
	Specific	(micromhoe PH of 25°C)				268	300		262	275		292	282		292			681	654	680	695	
			%Sof																			
	1	Diesol	ppm %Sof			10.6			11.5						9.6			6°3	9.7	11.6	11.9	
		E C C				52			55			58			63			62	58	45	45	
		Discrorge Tamp Dissolved in cfs in OF oxygen				1			1,5			1			2			1,1	1.8	1.2	1.1	
		ond time sompted	P.3.T.			2-17-64 1220	2-28-64	10 00 0	3-23-64	3-27-64		4-20-64	4-24-64		5-11-64 1340			10-9-63 1415	11-14-63 1250	12-12-63 1340	1-13-64 1130	

o Freld pH.

c Sum of calcium and magnesium in apm. b Laboratory pH

c sum or concernment may make the second of the second se

a Derived from conductivity vs TDS curves

f Determined by addition of analyzed constituents.

g Gravimetric determination

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by Calcinnia Department of Public Health, Duvision of Laboratories, or United Stores Public Health Service i Minanel analyses made by United Stores Ganlogical Survey, Duality of More Buok (1985), United Stores Public Health, Service Cannol District (SSEFCD), Menagelina Water Health (SSE), United Stores Operation of Water and Public Health, Service (USPHS), San Benaidina County Flood Cannol District (SSEFCD), Menagelina Water for Survey Callomo (1980), Les Angeles Department of Water and Paulic Madels, Service (USPHS), San Benaidina County Flood Public Febrier (SSEFCD), Health and Callomo (SMD), Les Angeles Department of Water and Peare (LADMP), City of Les Angeles, Department of Public Febrier, Survey Laboratoris, Inc. (TULJon Calinoi Department of Water and Peare (LADMP), City of Les Angeles, Department of Public Febrier, Buescher Laboratoria, Febrier, Laboratoria, Laboratoria, Curvei Laboratoria, Health, Sanida, Laboratoria, Curvei Laboratoria, Health, Sanida, Laboratoria, Inc. (TULJon Calinoi Department of Water and Peare (LADMP), City of Les Angeles, Department of Public Febrier, Laboratoria, Inc. (TULJon Calinoi Department of Water and Peare (LADMP), City of Les Angeles, Department of Public Febrier, Sanida Laboratoria, Inc. (TULJon Calinoi Department of Water and Paulic Febrier, Laboratoria, Inc. (TULJon Calinoi Department of Water and Paulic Febrier, Department of Public Febrier, Baulica Febrier, Laboratoria, Revier 2010, Calinoi Department of Mater and Paulica Febrier, Calinoi Department of Water Andrew 2010, Calinoi Department of Public Febrier, Calinoi Febrier, Raboratoria, Inc. (TULJon Calinoi Department of Water and Paulica Febrier, Department of Public Febrier, Raboratoria, Inc. (TULJon Calinoi Department of Water and Paulica Febrier, Duok 2010, Calinoi Department of Publica Febrier, Calinoi Paulica Febrier, Paulica Andrew 2010, Calinoi Paulica Andrew 2010, Calinoi Paulica Andrew 2010, Calinoi Pau

22505-0+H 6+61 200 3P0

ANALYSES OF SURFACE WATER

SAN FRANCISCO BAY REGION (NO. 2)

	Anolyzed by 1			RHO					DWR				DWR			
	Hordness bid- Coliform ^h Anolyzed es CaCO ₃ 119 MPN/mi by i															
, F	- piq -				3.2	3.0	1.5									
	dress aco ₃	رن و ∎ ۵	 	56		33		 	72		27					
			 	287	267	288	300	 	299	314	318		360	339	326	
	100	F	 	17		19		 	25		27					_
Tote	solids solids	å L		386	372	423	428		667	530	536		636		294	
	Other constituents			0°0 = SEV		ABS = 0.0								ABS = 0,0		
	Silica	(Pure)														
lion	Boron Silica	(8)		0.1	0.1	0.1	0.1	 	0.1	0.2	0.2		0.47	0.5	0.41	
aillia ber ai	Fluor	(E)										_				
parts per millian equivolants per million	- 1N	(NO3)	(22)	4.2 0.07		$\frac{1.4}{0.02}$		58)	1.2 0.02		5 <u>*0</u> 0 <u>*08</u>	265)		-		
equivo	Chio-	(ci)	 (STA. 2)	26 0.73		26 0.73		(STA. 2	<u>52</u> 1.47		$\frac{62}{1,75}$	K (STA.		82		
Ē	Sul -		CREEK	$\frac{73}{1.52}$		$\frac{67}{1,39}$		 CREEK	$\frac{101}{2,10}$		<u>102</u> 2.12	ID CREE				
stituents	Bicar -	(HCD3)	 PURISIMA CREEK (STA. 257)	<u>282</u> 4.62		311 5,10		PURISIMA CREEK (STA. 258)	256 4.20		<u>294</u> 4.82	SAN GRECORID CREEK (STA. 265)				
Minerol constituents in	Carban-	(cos)	4 4	0 <u>00</u>		0,00		- H	10 0,33		0,00	SAP				
Mine	Potos-	(¥)		2.44 40.06		2.8 0.07			2.8 0.07		$\frac{4_{*}4}{0_{*}11}$					
	Sodium	(01)		$\frac{27}{1.17}$		$\frac{31}{1,35}$			47 2.04		56 <u>2.44</u>					
	Magne-	(Mg)		18 1.49		$\frac{17}{1_*41}$			22 1.83		25 2.06					
	Colcium	(0)		B5 4,24		87 4,34			83 4,14		86 4.29					
	H	مره		$\frac{7.3}{8.3}$	8.2	<u>8.4</u> 8.3	8.4		8.6		$\frac{8.2}{8.3}$		7.9	8.1	8.1	
Concidio	conductance pH (micromhos pH			642	619	676	682		764	852	857		1010	964	935	
	P 10	ppm %Sof														
	Dissolvs d osygen	Edd		11,2	11.3	11.2	10.0				10.3		9,3	9.3	12.8	
	Temp in oF			52	87	53	58				56		65	61	42	
	Dischorgs Temp in cfs in oF			1.5	1,8	0.8	0.7						5	4	1	
	Dets ond time semoled	P.S.T.		2-17-64 1415	3-23-64 1530	4-20-64 1300	5-11-64 1500		2-28-64 1200	4-24-64 1030	5-11-64		10-9-63 1215	11-14-63 1320	12-12-63 1400	

a Field pH

b Laboratary pH.

d Iron (Fa), alumnum (AI), arearc (Aa), copper (Cu), lead (Pb), mangarese (Mn), zinc (Zn), and hexavalent chramium (Cr⁺⁴), reparted here as $\frac{0.0}{200}$ except as shown. a Derived fram conductivity vs TDS curves. c Sum of calcium and magnesium in epm.

Determined by addition of analyzed constituents.

Gravimetric determination. 0

Annul median and mape, reservely Colorised from andyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratoures, or United Stores Public Health Service. Mineral analyses made by United Stores Geological Survey, Quality of Water Branch (USSS), United Stores Public Health Service, Canton Proceedings and the Intervo. Surveu of Reclamation (USBR), United Stores Public Health Service, Canton Proceedings and the Discrete Stores Department of the Intervo. Surveu of Reclamation (USBR), United Stores Public Health Service, USPR), Si Senderadores, Canton Proceedings and the Intervo. Surveu of Reclamation (USBR), United Stores Public Health Service, USPR), Si Senderadores and Provide Stores Canton Proceedings and the Intervo. Surveu of Reclamation (USBR), United Stores Public Health Service, USPR), Si Senderadores, Department of Manher Mater Stores, Department of the Intervo. Surveu of Reclamation (USBR), United Stores Public Health Service, USPR), Si Senderadores, Department of Manher Manher Stores, Department of Manher Mater Stores, Low Mater Stores, Low Mater Stores, Department of Mater Stores, Department of

22205-0-8 6-61 200 SPO

ANALYSES OF SURFACE WATER TADUL D-4

SAN FRANCISCO BAY REGION (NO. 2)

				Ű	narifie	_				Mine	Mineral constituents	stituent	<u>د</u>	inbe.	ports per million aquivolents par million	par a	nullion			Totel					
Dote ond time	Discharge Temp in cfs in oF	Terno in oF	Dissolved osygen	9 <u>6</u>	conductance pH (micromhos pH		Colcium		Sodium	Polos-	or bon -	Bicar-		Chio-		<u> </u>	Boron	Silico		solved	cant.	Hordnes es CoCC	Sec. S	Hordness bid - Coliform ^h Analyzed	h Anoly
P.S.T.			ppm %Sof	%Sof	17-67		(co)	(6W)	(0 N)	Ξ£	(co ₃)	(HCO ₃)	(SO4)	(CI)	(NO _S)	Ē.	ê)	(SiO ₈)	Uther constituents	mag ui	5	Total N.C. ppm ppm	UE		_
											SAI	N GREGO	SAN GREGORIO CREEK (SIA, 265)	EK (S'LA	. 265)										
1-1 3-6 4 1200	1	42	13.2		986	8.2											0.5			604		345			DWR
2-17-64 1615	5	49	11.7	-	883	8,1											0.3		ABS = 0.0	543		321			
3-23-64 1600	2	52	11.0		748	8.1	60 2.99	25 2.06	$\frac{57}{2_{*}^{48}}$	<u>3.2</u> 0.08	0,00	209 3.42	120 2.50	54 1.52	0.8 0.01		<u>0, 3</u>			465	32	253	82 60		
4-20-64 1330	1	60	10.9		976	8,3											0*4		ABS = 0,0	623		346		3.8	
5-11-64 1530	1	65	9.8		986	8.4											0.4			635		345		1.5	
										i .	DS CATO	S CREEK	LOS CATOS CREEK NEAR LOS GALOS (STA. 74)	OS GAIN	S (STA.										
10-3-63 1910	130	68	8,8	98	383	8.0 8.1		<u>3,50</u> c	12 0.52		0,00	176 2.88		9.0 0.25			0.0				13	175	31	6.2 0.23	SDSU
11-8-63 1335	0.3	59	8.8	88	589	7 <u>*3</u> 8*3		5.42c	18 0.78		$\frac{1}{0,03}$	261 4.28		$\frac{14}{0,39}$	10		0.2				13	271	55 15	230.	
12-4-63 1910	59	67	11.3	66	330	8,0 8,0		3,00c	11 0,48		0*00	$\frac{148}{2,43}$		$\frac{6.0}{0.17}$	15		0.1		As = 0,00		14	150	29 40	6.2	
1-7-64 1130	80	47	11.6	100	381	8.1 8.6	-	<u>3.54c</u>	<u>13</u> 0.57		$\frac{14}{0.47}$	$\frac{152}{2.49}$		3.0 0.08	Im		0.1				14	177	29 25	2.3	
2-6-64 1145	23	48	11.7	102	335	8.2 8.2		2,92c	12 0.52		0*00	$\frac{122}{2*00}$		7 <u>*8</u> 0 <u>*22</u>	lar		0.1				15	146 4	46 110	6.2 23.	
3-5-64 1200	18	53	11.5	107	454	8.2 8.3		4.32c	15 0.65		2 0.07	171 2.80		12 0.34	1.0		0.*2				13	216	72 60	0.23	
4-7-64 1045	8,3	59	11.1	111	636	8.4 8.5		5 <u>,98</u> c	23		5 0.17	246 4.03		15 0.42	lar		0.1				14	299 8		8 13.	

O FIGIO DH.

b Laboratory pH

e Sam af calcium and magnessum in epm. d Iran (Fel, oluminum (A1), arsainic (As), coppar (Cu), lead (Pb), manganese (Mn), sinc (Zn), and neoralent chramium (Cr⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves.
 f Determined by addition of analyzed constituents.

Gravimetric determination. 0

ء_

32505-0-H 6-61 200 SPO Amoal median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Stomes Public Health S. J. Vice Manuel analyses made by United Starse Geological Survey, Duality Matter Bookannen of Inh Interior, Burreu of Reclamation (USBR), United Stomes Public Health S. J. Vice Control District (SGECC), Manualities Matter of Sommer (MSD); Las Anagles, Department of Inh Interior, Burreu of Reclamation (USBR), United Stomes Public Health S. Son Banachine County Flood Public Health (LBDH); Remind Terring Laboratories, Inc. (TL), so California Oranter of Nate and Power (LADMP); City of Los Anagles, Department of Public Health LEDH); City of Los Anagles, Department of Public Health (LBDH); Remind Terring Laboratories, Inc. (TL), so California Oranter of Nate and Power (LADMP); City of Los Anagles, Department of Nate Public Health (LBDH); Remind Terring Laboratories, Inc. (TL), so California Deartment of Nate and Power (LADMP); City of Los Anagles, Department of Public Health (LandPH); City of Los Anagles, Department of Nate Analysis and Analysis and Analysis and Analysis and Nate Resources (DMR); as indicated

ANALYSES OF SURFACE WATER

SAN FRANCISCO BAY REGION (NO. 2)

	Analyzed by 1			uses					 	DWR	Field determi- netione	DWR	Field determi- nations	DWR	Field determi- netione	7
	bid - Caliform ^h A ity MPN/ml			2.3	62. 23.	13. 6.2	23. 62.	2.3 6.2	 						m b L	-
Tur-	- piq -			105	40	220	5	1								
	200	U E d		95	62	113	107	105		24		42		42		
		ppm		336	244	402	432	393		262	230	234	205	233	255	
	Tent - Han			14	15	15	14	13	 	33		31		30		
Totel	eolved bolide			451				525		476		386		401		
	Other constituents			As + 0,00 ABS = 0,1 PO, = 0,00	ż			$A_{\rm B}^{\rm a} = 0.00$ ABS = 0.1 PO ₄ = 0.05						Pe = 0,15		
	Silica			12				5	 	26				21		-
ion	I S	5		0.1	0,1	0.1	0.2	0.3		0.58		0.4		0.39		_
er mil	Flug-		74)	0.3					 	0.4 0.02				0.02		
ports par million ivalents par mill	Ni- trate	+	(STA. 7	1.1 0.02				0.4 0.01	 ()	0.1 0.00		0, 7 0, 01		0.4 0.01		
ports per million equivalents per million	Chie-	ĵ	GATOS	16 0,45	$\frac{12}{0_*34}$	18 0.51	22 0.62	16 0.45	 STA. 25	63 1.78	70	48	40	44 <u>1.24</u>	22	
Ē	Sul - tote	(S04)	NEAR LOI	116 2,42				$\frac{131}{2.73}$	 PESCADERO CREEK (STA. 256)	$\frac{73}{1.52}$		77 1.60		79 1.64		
atituante	Bicar- banete	(HCD ₃)	CREEK	286	<u>202</u> 3.31	336	<u>388</u> 6, 36	<u>351</u> 5.75	SCADERO	290 4.75		234 3.84		233 3.82		_
Minarol constituante	C or bon -	(c03)	LOS CATOS CREEK NEAR LOS CATOS (STA.	4 0.13	10 0,33	8 0.27	4 0,13	0.00	- 82 -	0,00		00*0		00.00		
Min	Pelas-	¥		2.8 0.07				3.0 0.08		4.6 0.12		3.5 0.09		2.8 0.07		
	Sodium (No)) 		25 1,09	20 0.87	32 1,39	33 1.44	28 1,22		60 2,61		49 2.13		46 2,00		-
	Magne-	(6M)		- <u>31</u> 2.58	4 <u>,88</u> c	8.04c	8.64c	$\frac{20}{1.62}$		$\frac{27}{2.24}$		19		17 1.42		
	Calcium			83				125 6.24		60 2.99		62 3,09		65 3.24		
	I. C	1.0		8.2	8.3 8.6	8.4 8.4	8.3 8.4	8.0 8.1		7.8 8.2		8.2 8.3		7.7 8.0		
Concidio	(micramhoa			685	524	807	863	785		774	630	666	500	658	672	
		%Sot		105	98	66	106	108								-
	Disselved csygen	p m q	-	10.6	9.6	8.5	9*5	9.7	 	0*6		6*6		12.8		-
-				58		72	68	68		63		59		38		
	Discrarge Tamp in c1s in of			1.5	5.7	60	0.5	0.5		5	4.5	6	18	a	6.6	
	Date ond time admpled	P.S.T.		5-6-64 1040	6-10-64 1010	7-8-64 1000	8-6-64 1000	9-3-64 1100		10-9-63 1100	10-17-63 1010	11-14-63 1415	11-27-63 1205	12-12-63 1030	12-31-63 1100	

b Leboratery pH.

c Sum af colcium and magnesium in epm.

c Sum at activities and magnetium in spin. d flow (Fi), eluminum (MI), arsenic (As), cosper (Cu), lead (Pb), mongorese (Mn), zinc (Zn), and hexavolent chromium (C⁺⁵), reported here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination.

h Annuel madion and reage, resectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Sovies and Stores Public Health Sovies. 1 Minarel analyses made by United Stores Caelogical Survey, Quality & Neuro Busch (USC): United Stores Public Health Sovies and Stores Caelogical Survey, Quality & Neuro Busch (USCH); Stores Caelogical Survey, Survey, Caelogical Survey, Survey, Caelogical Survey, Survey, Caelogical Survey, Survey, Caelogical Survey, Survey, Caelogical Survey, Caelogical Survey, Surve

32505+0+8 6+61 200 SPO

WATER
SURFACE
Ч
ANALYSES

SAN FRANCISCO BAY REGION (NO. 2)

	Anolyzed by 1			DWR	Field determi- natioos	DWR	Field determi- nations	DWR	Field determi- mations	DHR	Field determi- nations	DWR		DAR
	Hordness bid - Coliform Anoiyzed es CoCOs ity MPN/mi by 1 by 1													
Tura	- piq							160		4.5		2.7		
	acO ₆	Totol N.C. ppm ppm		43		55		47						
				252	185	230	240	177	220	240	240	243		140
-				32		26		30						
Totel	solide	n ppm		434		364		310		422		437		267
	Other constituents			ABS = 0,0		ABS = 0,0				A85 = 0,0				
	Silico	SiQ ₈)		<u>ค</u>										
lion	ç			0.4		0,3		0.2		0.4		0.5		0.17
er mil	Fluo-			0.4										
parts per million equivalents per million	- IN -		(9)	0.1 0.00		5.7 0.09		0 <u>, 6</u>						
equiva	Chio-	Ĵ	(STA. 25	51 1.44	32	38 1,07	50	30 0,85	42		52		BUTANO CREEK (STA. 249)	
Ē	Sul -		CRFEK	81 1.69		78 1.62		76 1.58					CREEK (:	
atituenti	Bicor-	(HCO3)	PESCADERO CRFEK (STA. 256)	255 4.18		213 3.49		159 2.61					BUTANO	
Minerol constituents	Corbon -	(co3)	D.	0 <u>*00</u>		0*00		0,00						
Min	Potoe-	(x)		3.0 0.08		2.8 0.07		2.9 0.07						
	Sodium	(0 N)		55 2.39		$\frac{37}{1.61}$		<u>35</u> 1,52						
	Mogne	(6w)		19 <u>1,59</u>		18 1.46		$\frac{13}{1.04}$						
	Colcium	ŝ		69 <u>3.44</u>		63 3,14		50 2.50						
	Ĩ	ماه		8.2 8.2		7.6 8.0		$\frac{8.1}{7.9}$		8.2		B.4		7.3
Specific	conductance pH (micremhos pH	h-cz 10		712	450	621	570	518	560	569	600	710		458
		% Sat												
	Dissol	ppm %Sat		14.3		12.7		11.2		10,9		10.0		7.7
	Ten n n			41		42		48		59		66		19
	Orechorge Temp Dissolved in cfs in OF Deygen			5.5	64	14.5	11.4	28.2	14	5.5	ŝ	4.5		5
	Oate ond time	P.S.T.		1-13-64 1300	1-27-64 1143	2-18-64 0950	2-28-64 1300	3-23-64 1630	3-27-64 1230	4-20-64 1430	4-24-64	5-11-64 1630		10-9-63

o rield pr.

b Laboratory pH.

c Sum of calcium and magnesium in epm.

tion (Fe), alummun (AI), arsenic (As), caper (Cu), lead (Pe), manganese (An), zinc (Zn), and herevalent chranium (C⁺⁴), reparted here as $\frac{0.0}{0.00}$ except as shown. Derived fram conductivity vs TDS curves. Determined by addition of analyzed carstitumts. ~0

.

Gravimetric determination.

32505-0-H 6-61 200 3PO h. Ansual median ond range, respectively. Calculated from analyses of duplication monthy samples made by California Department of Public Health, Division of Laboratours, or United Stores Public Health Service 1. Mineral analyses made by United Stores Caelongian Stares (USCS): United Stores Stares Department of the Interior, Sueros of Reclanation (USBR), United Stores Public Health Service Caenal District (SECFCD): Menageloinar Went District of Samme Caelongian (AMD): Las Angeles Department of Menatives, Sueros of Reclanation (USBR), United Stores Public Health Service (USPRS): Son Bennadian Caunty Fload Department (SECFCD): Menageloinar Went District of Samme Caelongian (AMD): Las Angeles Department of Menatives, Sueros and Reclanations (USBR): Termosof Stores Public Health, Service (USPRS): Son Bennadian Caunty Fload Poblic Fload (Laboratic Fload Laborators): Exc. (TLL): or Galona Department Mater Resources (DMR): as indicated Poblic Fload (Laborators): Exc. (TLL): or Galona Department Mater Resources (DMR): as indicated

-123-

ANALYSES OF SURFACE WATER

SAN FRANCISCO BAY REGION (NO. 2)

		-								M	Mineral constituents in	maritum	ote in		ports per million	er millio	-				-					
		_			Specific									nbe	equivalents per million	per m	illion			Total			Tur-		4	
sompled P.S.T.	Dischorge Tamp in cfs in of	00 L	Pon of the test	Dissolvs d asygen ppm %Sat	conductance (micromhos PH of 25°C) a	I elo	Calcium (Ca)	Mogne- aum ((Mg)	Sodium (Na)	Potos- svum (K)	Cerbon- ate (CO ₃)	- Bicor- banate (HCO ₃)	- Sul - te tete (SO ₆)	Chio-	- NI- Irots (NO ₃)	Fluo- ride (F)	Baron (B)	Silica (SiO ₂)	Other censtituents	solved sed - solids ium in ppm		Total N.C.		bid - Coliform Anolyzed ity MPN/mi by i h gpm	And by	
												BITTAN	CBFFK	HITANO CEPER (STA 249)	1920											
												-	-	• • • •	-											
11-14-63 1545	10	58	9.1	_	358	7.6											0.1			185		120			OWR	×
12-12-63 1125	4	41	11.9		431	7.3											0,12			246		135				
1-13-64 1320	۳	45	10.9		539	8,1											0.4			304		160				
2-18-64 1055	5.5	5 47	1.11		404	7.4											0*1		ABS = 0.0	249		127				
3~23~64 1700	10,1	1 50	11.0		319	7.5	26 1.30	8,3 0,68	22 0,96	2.8 0.07	0,00	<u>101</u> <u>1.66</u>	26 0.54	24 0.68	8 0.01 8		0.1			190	32	99	16 330			
4-20-64 1520	1.8	8 52	8.5		472	7.8											0.2			272		137	45			
5-11-64 1705	1.5	5 57	8.0		442	7.5											204			257		134	40			
												BUTAN	0 CREEK	BUTANO CREEK (STA. 250)	250)											
4-20-64 1600	0.8	<i>m</i>			407														A8S = 0.00	238		138	33		DWR	×
											COYOL	LE CREE	K NEAR	COVOFE CREEK NEAR MADRONE (STA. 82)	(STA. 8	- (2)										
10-3-63 1120	7.7	7 68	8.6	56 92	339	$\frac{7.9}{8.3}$		<u>2.96</u> c	= 14 0.61		0,07	160 2.62		11 0.31	1		0.0				17 1	148	14 1	1 2.3		USGS
a Field pH.		-																				1				1

b Laboratary pH

Iron (Fe), aluminum (AI), areanic (As), coper (Cu), lead (Pb), manganese (An), zinc (Zn), and heavelent chromium (Ci⁺⁰), reported here as $\frac{0.0}{0.00}$ except as shown. Derived from conductivity vs TDS curves Sum of calcium and magnesium in epm. υ

Determined by addition of analyzed constituents.

Gravimetric determination.

h Annual median and ronge, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Stores Public Health Service 1. Mineral analyses made by United Stores Caelogical Survey, Danily of Wane, Branch 1996, 1915, 1916, 1955, 1916, 1955, 1916, 1955, 1916, 1955, 1916, 1955, 1916, 1955, 1916, 1955, 1916, 1955, 1916, 1955, 1916,

32305-041 0-01 200 3R0

ANALYSES OF SURFACE WATER SAN FRANCISCO BAY REGION (NO. 2)

Γ		Anoiyzed by I				uscs													DAR
	-	24	_						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			22							<u>ځ</u>
		11 MPN/ml				23. 62.	13. 23.	1.3 6.2	5. 6.2	23. 6.2	230. 62.	2.3	620. 6.2	62. 23.	62. 62.	23. 23.			
	Tur-	- 010 11 0 0 m				-	2	1	15	15	-	2	e	5	5	2			
		ee CoCOs	ui ₩ ₩			19	19	1 17	18	23	17	20	29	25	31	37			
			Tatal ppm			165	170	173	159	181	178	177	192	205	262	272			109
	8	L L L L L L L L L L L L L L L L L L L	-			18	18	18	20	17	16	17	18	6	19	20			
		solids	ja e u									238				367			221
		Other constituents	I									$\frac{8.8}{100} = 0.01$				$\frac{6.0}{P0_4} = 0.00$			
		Silico	(Bric)																
	u	Boron				0.1	0.0	0,1	0,1	0.2	0.6	0.1	0.3	0.2	0.2	0.2			0,18
millio	per million	Fluo-	(E)		~							0.2							
	aquivolanta	Ni- trota	(NO.3)		COYOTE CREEK NEAR MADRONE (STA. 82)		-					$\frac{1.0}{0.02}$				$\frac{0_{*}6}{0_{*}01}$		<u> </u>	
ă	oninb e	Chio-	(CI)	_	DRONE (10 0.28	9.0 0.25	$\frac{11}{0,31}$	$\frac{12}{0_*34}$	$\frac{12}{0_*34}$	0.34	$\frac{12}{0_*34}$	10 0,28	$\frac{13}{0_*37}$	$\frac{20}{0,56}$	$\frac{25}{0_*71}$	_	UN203 UNEEN (STA. 233)	
.c		Sut -			NEAR MA		_					38 0.79				<u>65</u> 1,35		NEER (S	_
atituant		Bicor-	(HCD3)		E CREEK	$\frac{174}{2,85}$	<u>176</u> 2.88	$\frac{178}{2*92}$	$\frac{156}{2*56}$	$\frac{175}{2*87}$	<u>186</u> 3.05	$\frac{191}{3.13}$	$\frac{185}{3.03}$	$\tfrac{202}{3,31}$	264 4.33	$\frac{274}{4_{*}49}$			
Minerol constituents		Carban-	(c0 ₃)		COYOTI	$\frac{2}{0_{*}07}$	4 0.13	6 0,20	8 0.27	9 0,30	$\frac{5}{0.17}$	0*00	$\frac{7}{0_{*}23}$	9 0,30	9 0,30	$\frac{6}{0_{*}20}$			
CiW	ſ	Potas-	(¥)									$\frac{1,8}{0,05}$				2.5 0.06			
	Ī	Sodium	(0 M)			<u>16</u> 0,70	$\frac{17}{0_*74}$	$\frac{17}{0_*74}$	<u>18</u> 0.78	$\frac{17}{0_*74}$	<u>16</u> 0,70	$\frac{17}{0_*74}$	$\frac{19}{0,83}$	9.0 0.39	28 1.22	32 1,39			
		-sugaw	(M)			<u>3,30</u> c	<u>3.40</u> c	3.460	<u>3,18</u> c	<u>3,62</u> c	<u>3, 56</u> c	$\frac{15}{1^{\ast}2^4}$	<u>3.84</u> c	<u>4.10</u> c	5.24c	<u>33</u> 2.75			
		Calcium	10-11									46 2,30				54 2.69			
	1	I	م.			7.4 8.3	8.4 8.4	8,3 8,6	<u>8,3</u> 8,6	8.4 8.5	$\frac{8.2}{8.5}$	$\frac{8_{*}2}{8_{*}2}$	<u>8.2</u> <u>8.6</u>	<u>8.4</u> 8.6	8.2 8.5	<u>8.4</u> 8.4			7.4
	pecific	(micromhos P ot 25°C)	5			375	379	388	365	105	403	404	424	452	\$77	615			375
	s.	SE O	6 Saf	_		110	105	108	111	115	130	111	96	111	109	150			
		Ussolvad osygen	ppm %Sat			10.5	1.11	11.4	12.2	12.8	13.4	11.4	9.6	9.3	8.7	13.0			9.5
╞	_		4			63	22	55	52	51	57	57		75	80	72			55
		Dischorge Temp in cfa in of				20	24	37	16	6.8	88	102	110	75	1.3	0.6			1.5
		ond time sampled	P.S.T.			11-7-63 1140	12-5-63 1330	1-9-64 1245	2-5-64 1120	3-4-64 1030	4-9-64 1330	5~7-64 1345	6-9-64 1015	7=7-64 1300	8-5-64 1315	9-4-64 1155			10-10-63 1000

o Field pH

b Laboratory pH.

c Sam of calcium and megnessium in sem. d Iran (F.a), aluminum (M1), arsenic (M3), copper (Cu), lead (Pb), monganese (Mn), sinc (Zn), and hexorolent chromium (Cr⁺⁴), reported here at $\frac{0.0}{0.00}$ escept as shown.

Darived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

g Gravimetric determination.

h. Annol median and range, respectively. Colculated from endyses of displication monthy samples mode by California Department of Public Health, Division of Laboratories, or United Stores Public Health Service.

 Marvedl and/estable Stores Geological Stress Quantyr Waves Bronch (USGS): United Stores Public Health Service.
 Marvedl and/estable Stores Geological Stress Quantyr Waves Bronch (USGS): United Stores Department of Inhalteners, United Stores Public Health Service. (ISPFR): Stores Public Health Service.
 Marvedl and/estable Stores Geological Stress (Stores): USGS): United Stores Department of Inhalteners, United Stores Public Health Service. (USPHS): Store Baredon Caunty Flood Computing and Nature Stores Public Health Service. (USPHS): Store Baredon Caunty Flood Computing and Nature and Public Stores (Stores): Table Stores Colloration (Store): Las Application Stores Stores Colloration (Store): Las Application Stores Colloration (Stores): Las Applications and Public Health Service.

045 002 T0-9 H-0-5052E

-125-

ANALYSES OF SURFACE WATER

SAN FRANCISCO BAY REGION (NO. 2)

				Canadida					W	Minsrol constituents in	nstituent	u .	vinba	squivalents par million	par mi	lion			Totel			Tur-	4	
Dots ond tims sampled DeT	Oischorge Tamp in cfs in of	in of	Diesolved osygen	(micramhos 1 (micramhos 1 at 25°C)	년 이 	Colcium (Co)	Magne-	Sodium (No)	Potas- sum (x)	Corbon- ote	Bicar- bonote (HCO_)	Sul - fats (SO.)	Chio-	Ni- trats (NOL)	Fiuo- ride (F)	Baron (B)	Silico (SiO ₂)	Other constituents	solved solved in spm	T T T	Hordnese ee CoCOs Totol N C.		alı farm ⁿ MPN/ml	Hordnese bid - Coliform ¹ Anolyzed ec.CoCO ₃ h ppm Total N.C.
													STA. 25	- 						<u> </u>				
11-14-63 1700	4	58	9.5	333	7.4											0.1			179		102			DAR
12-12-63 0930	1	39	12,6	355	7.4											0.09			208		105			
1-13-64 1500	1	45	12.4	373	7 <u>,7</u>	25 1.25	12 0.97	30 1,30	2.2 0.06	0*00	109	42 0, 87	$\frac{32}{0,90}$	0*00	0.2	1*0	18		223	36	111 2:	22		
2-18-64 1210	2	45	12,3	331	7.2											1*0	AB	ABS = 0.0	192		97			
3-23-64 1730	4	51	10.7	336	7.4											0.2			221		97	32		
4-20-64 1640	1	56	10.3	364	7.8											0.1	AB	ABS = 0.0	217		106	3.6		
5-11-64 1755	1	57	0*01	370	8.1											1*0			218		106	5.1		
										3	HITEHOUSE CREEK (STA. 266)	SE CREE	 К (STĄ.	266) 1										
10-10-63 1045	0.1	1 58	7.0	507	7.2											0.28			300		133			DWR
11-14-63 1600	1.5	58	8.3	515	7.6	-										0.2			162		139			
12-12-63 0915	0.3	3 41	11.9	475	<u>c.</u> 7											0,19			283		126			
1-13-64 1600	0.3	3 45	11.0	636	7.3	-										0.3			357		176			
2-18-64 1250	0, 5	5 47	11.5	390	<u>2.3</u>	-										0.1	3V	A85 = 0,0	233		101			

b Laboratary pH.

Sam of colcium and magnesium in som. Iran (Fe), aluminum (Al), arsence (As), cooper (Cu), lead (Pb), marganese (Ma), zinc (Zn), and hisovalert chromium (C.⁺⁶), reported here as $\frac{0.0}{0.00}$ except as show.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination.

Anoul median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Meallin, Division of Laboraovies, or United Stores, Public Meallin Service. Manuel analyses made by United Stores Goological Survey, Quality af Ware Book Department of Inh Interior, Bureau of Reclamation (USBR); United Stores Public Meallin Service Control District (SBCFCD), MemoryLand Stores, California (MSD); Los Angales Department of Mater and Prever (MAMP); City al Los Angales, Department of Public Mealling (BBCFCD), MemoryLand Stores, Inc. (ITL); Par California (Mater Rouvers (DMRP); City al Los Angales, Department of Public Mealling (LBDP); The Manuel Testing, Laborates, Inc. (ITL); Par California District (SMC); City al Los Angales, Department of Public Mealling (LBDP); The Meal Testing, Laborates, Inc. (ITL); Par California District (MSMP); City al Los Angales, Department of Debater Mealling (LBDP); The Meal Testing, Laborates, Inc. (ITL); Par California District (MAMP); City al Los Angales, Department of Debater Mealling (LBDP); The Meal Testing Laborates, Inc. (ITL); Par California District (MAMP); City al Los Angales, Department of Debater Meal LBDP); The Meal Testing Laborates, Inc. (ITL); Par California District (MAMP); City al Los Angales, Department of Debater Meal LBDP); The Meal Testing Laborates, Inc. (ITL); Par California District (MAMP); City al Los Angales, Department of Debater Meal LBDP); City al Los Angales, Department of Kauker Rouxers (DMR); as indicated

32505-0-H 6-61 200 SPO

ANALYSES OF SURFACE WATER SAN FRANCISCO BAY REGION (NO. 2)

	initial and	by I			DWR			
	4.4.4	solved tod - es CaCO3 liv MPN/mi by 1 solids ium Tatal N.C. nppm MPN/mi by 1 ium ppm ppm ppm						
	- Califor	NAM						·····
	Tor	S UE			70	20	32	
	iordnes	Tatal N.C.			101	124	143	
	- au		-					
	Totel dis-	solved solids in per			266	282	320	
		Other constituents				ABS = 0.0		
	$\left \right $	Siliteo (SiQa)	-			<		
	lion	Boron Silito (B) (SiOg)			0.2	0.2	0.2	
ports par million	E	Fluo- rids (F)						
rts par	18118	Ni- trots (NO ₃)		266)				
90	squivotents par million	Chio- rids (CI)		(STA.				
			t	WHITEHOUSE CREEK (STA. 266)				
Minerol constituents in		Potas- Corban- Bicar- Sul- sium ote bonots fats (K) (CO ₃) (HCO ₃) (SO ₆)	t	TEHOUSE				
ol cons		c 03) (F	THW				
Minar	╞	- t t t t t t t t t t t t t t t t t t t	┢					
	$\left \right $	Sodium Po						
	-	-sugars-	-					
	+	Caleium Magna- (Ca) (Mg)	\vdash					
_	1	T ela	-		7.3	7.4	7.3	
	Specific	Unschorge Immp Unschorgen Concorder PH in cfs in °FF osygen (inicromhos PH perm %csch of 25°C) =			398	475	550	
		% Sat	T					
	Disco	0.890			10.5	10.0	0*6	
	Tamo	59			50	53	54	
	Concernant of the second	Unscrorg in cfs			-	0.3	0.3	
	Dote	ond time somplad P.S.T.			3-23-64 1750	4-20-64 1705	5-11-64 1800	

b Laboratory pH.

c. Sum of calcium and magnessum in spin. d. Nam (F4), oluminum (K1), arsanic (A3), copen (Cu), lead (Pb), manganese (Ma), zinc (Zn), and hexaralent chramium (Cr⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown. c Sum of calcium and magnesium in epm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

h Amoel median and rongh respectively. Colculated from mariy sare of dupitation and the surface of the Internet of Public Health, Division of Laboratoris, or United Stores, Public Health Service. 1. Amoed anotyses mode by United Stores Geological Survey. Duality of Heads Boots. Duspectation of the Interior, Bureas of Reclanation (USBR), United Stores, Public Health Service. Cannol District (SSECCD), Marted Stores Condury of Neurol Post-Amoed The Interior, Bureas of Reclanation (USBR), United Stores, Public SHeadth Service. Post-Interior, Bureas, Providence and Stores Condurated Scores, Department of the Interior, Bureas of Reclanations (USBR), United Stores, Public SHeadth Service. Post-Interior, Bureas, Department of Stores, Condury Stores, Condury Flood Post-Interior, Bureas, Thermool Teatrong Laboratores, Inter (TUL): or distance Department of Wareas, Department of Public Section, Bureash, Department of Post-Interior, Bureas, Department of Stores, Condury Flood

32505-0-8 6-61 200 500

32505-0-H 6-61 200 3P0 Amuel median and range, resectively. Calculated from analyses of duplicate routhly samples made by California Degamment of Public Health, Division of Loboratories, or Unned Stores Public Health Service. Mareel analyses and by United States Geological Survey, California (SSS), United States State

Gravimetric determination.

Sum of column and mopretum in sum. For $|F_4\rangle$, adminium (A1), asserted here as $\frac{0.0}{0.00}$ except as shown.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves c Sum of colcium and magnesium in epm.

b Loboratory pH.

TABLE D-2

ANALYSES OF SURFACE WATER

CENTRAL COASTAL REGION (NO. 3)

										Mine	irol con	Mineral constituents	Ē	equivol	ports per million volants per mill	ports per million equivolants per million	Lo Lo		-	otel				
Date and time sompled P.S.T.	Discriorge Tamp Dissolved in cfs in oF osygen ppm 9/c Sot	Tan in of	Diss	Dissolvs d osygen ppm %Sot	conductance (micromhos of 25°C)	I elo	Calcium (Co)	-engow muis (gM)	Sodium (No)	Potos- C sium (K)	Corbon- 010 (CO3)	Bicor- bonate (HCO ₃)	Sul - fots (SO ₄)	Chio- rids (CI)	Ni- trots (NO ₃)	Fluo- rids (F)	Boron Silica (B) (SiO ₂)	a Other constituents		solved eos- solved eos- ium ium		N C n pi	Hordness bid - Coliform ⁿ Anolyzed es CoCO ₃ IIY MPN/mi by I Toiol N.C. hopm	a Anolyza
									F	T						-	-		_					
									SAN	LORENZO	RIVER S	SAN LORENZO RIVER SIX MILES NORTH OF BOULDER CREEK (SIA, 228)	S NORTH	OF BOUL	DER CRE	EK (STA	* 228)							
10-7-63 1220	1	57	9.8	94	552	8.0 8.2		<u>5, 00</u> c	24 1,04		0.00	<u>261</u> 4,28		13 0,37	$\frac{0.8}{0.01}$			Fe = 0.03 .P04 = 0.66		355	250			DWR
11-6-63 1500	4	51	10.0	06	4444	8.4 8.0		3.84c	<u>18</u> 0.78		0.00	184 3.02		12 0,34	0 <u>,7</u> 0.01			Fe = 0.02 Mn = 0.00 ABS = 0.0 FO ₄ = 0.51		285	192			
12-10-63 0915	6	14	11,3	88	534	7.9									0.00			P04 = 0.39		345				
1-14-64 0905	1.5	40	12.0	92	550	8.0 8.2		<u>4.92</u> c			0.00	250 4.10		15 0.42	$\frac{0.4}{0.01}$			PO4 = 0.50		355	246			
2-19-64 0840	2	45			536	7 <u>,5</u> 8 <u>,1</u>		4.76c			0.00	235 3.85		16 0.45	0.2 0.00			Color = 0 PO ₄ = 0.45	12	345	238			
3-24-64 0930	e	42	12.0	95	493	8.1 8.0		4.30c			0*00	204 3.34		15 0.42	1.0 0.02			Po4 = 0.48		320	215	40		
4-21-64 0930	2	47	11.6	86	549	$\frac{8.4}{8.1}$		4 <u>.86</u> c			0*00	$\frac{252}{4*13}$		16 0.45	$\frac{1.2}{0.02}$			Fe = 0.03 $PO_4 = 0.49$		355	243	۳ 	3,2	
5-12-64 0910	1	50	10.2	90	559	8.3 8.3		4 <u>.98</u> c			2 0,07	254 4.16		<u>16</u> 0.45	0.4 0.01			Po4 = 0.55		360	249		1.3	
6-25-64 0755	1.5	59	8.9	88	562	7 <u>*8</u> 8 <u>*4</u>		<u>4.98</u> c	24 1.04		2 0.07	258 4.23		15 0.42	<u>1.8</u> 0.03			PO4 = 0.58		360	249		1.5	
7-21-64 0730	1	56	8.1	17	564	7 <u>~5</u> 8 <u>~7</u>		<u>5,07</u> c			16 0,53	237 3,88		15 0.42	0.00			PO4 = 0.58		365	254		0.6	
8-18-64 1315	0.8	62	9.7	66	564	<u>8.2</u>								14 0,39	0.4 0.01			ABS = 0.0 $PO_4 = 0.64$		365		0	0.1	
9-23-64 0810	0.5	55	1°6	86	573	8.0		4 <u>.98</u> c						9.3 0.26	1.1 0.02			F04 = 0.70	_	370	249		1.5	
o Freid pH.	-								1	1														

3)
(N0.
REGION
COASTAL
CENTRAL

. Γ

		Andlyze by 1				DWR												
		bid - Coliform" ¹¹ 		_														
	Tur-	- pid - 1 ppm									5.5	2.5	1.5	2.0	0.8	0.5	1.8	
		Hordness as CoCO ₅	m00 m00															
		HOLE I	100			266	201		252	242	205	242	249	253	266		271	
┝	-	eolved eod - eolide eod - ium eom																
L	Tote	e olive				435	330	380	400	385	335	395	405	420	465	290	530	
		Other constituents				Fe = 0.03 $Fo_4 = 0.27$	$\begin{array}{rcl} Fe &= 0.08 \\ Mn &= 0.00 \\ ABS &= 0.0 \\ PO_4 &= 0.27 \end{array}$	$PO_4 = 0.22$	$P0_4 = 0.20$	$P0_4 = 0.21$	$PO_4 = 0.22$	$P0_4 = 0.23$	$PO_4 = 0.28$	PO4 = 0.21	$PO_4 = 0.20$	ABS = 0.0 $PO_4 = 0.25$	Po4 = 1.4	
		Boron Silico (B) (SiO ₂)																
	llion	Boron (B)			A. 206)													
millio	E	Fluo-	Ē	_	EK (ST													
parts per million	equivalents per million	N) - trate	(⁶ 0N)		DER CRE	0.8 0.01	0.01	0.00	$\frac{0.4}{0.01}$	0 <u>,5</u> 0.01	1,3 0,02	$\frac{1.3}{0.02}$	0*00	$\frac{1.0}{0.02}$	0.00	$\frac{0.4}{0.01}$	2 <u>*5</u> 0 <u>*04</u>	
ľ	equiv	Chio-	(C)		OF BOUT	$\frac{27}{0_*76}$	<u>1.6</u> 0.45		20	$\frac{17}{0.48}$	14	20 0, 56	$\frac{22}{0,62}$	<u>28</u> 0.79	$\frac{36}{1.02}$	<u>89</u> 2,51	$\frac{82}{2.31}$	
	<u>e</u>	Sul -			THEAST													
	stituents	Bicor - bonote	(EOUH)		LES NOR	245 4.02	<u>154</u> 2.52		<u>217</u> 3.56	<u>195</u> 3.20	$\frac{172}{2*82}$	214 3.51	218 3.57	<u>225</u> 3.69	$\frac{251}{4.11}$			
	Minerol constituents	Corbon-	16031		BEAR CREEK FOUR MILES NORTHEAST OF BOULDER CREEK (STA.	0*00	00*00		0*00	0 0,00	0*00	0*00	$\frac{2}{0_{*}07}$	4 0.13	0,00			
:	uiw	Potos-		_	R CREEK													
		Sodium (No)			BEA	42 1.83	26 1.13							<u>38</u> 1.65				
		Mogne	(6w)			5,31c	4 <u>,02</u> c		5,03c	4.84c	<u>4.10</u> c	4.84c	4 <u>*98</u> c	5,05c	5.31c		<u>5.41</u> c	
		Calcium (Ca)																
		۲ n	٩			$\frac{7_*7}{8_*2}$	7 <u>*9</u>	8.1	7 <u>.9</u> 8.3	$\frac{7_{*}6}{8_{*}2}$	$\frac{8,1}{7,9}$	8.3 8.0	$\frac{8,2}{8,3}$	$\frac{7.7}{8.4}$	7.6 8.3	7.9	7.9	
	Specific	(micramhos pH ot 25°C) a				669	505	182	614	165	514	607	624	9449	111	905	818	
		pen d	%o Saf			88	92	93	67		96	96	102	100	95	88	93	
		Die	Edd			9.4	10.1	10.9	12.6		11.3	10,7	6*6	0.6	9.5	8.9	9.3	
E		Ten in oF				55	52	47	40	44	47	51	63	70	09	59	60	
		Discharge Temp in cfe in oF				0.5	e	2	1	6	n	1.5	1.5	1	1	0.8	0.5	
	_	and time compled				10-7-63 0820	11-6-63 1430	12-9-63 1530	1-14-64 1100	2-19-64 1050	3-24-64 1600	4-21-64 1445	5-12-64 1400	6-24-64 1220	7-21-64 0945	8-18-64 0945	9-23-64 1200	

Laboratory pH. o Field pH

c Sum of calcium and magnetium in epm. d Iran (Fe), aluminum (AI), arsenic (A4), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown.

e Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination.

h. Amal median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Organization Organization of Public Health Service. 1. Manual median and vary respectively. Calculated from analyses of Water Branch Department of Public Health Service. 2. Manual molyses made by United States Gealgards Survers Department of Inch Instructor, Surver of Reclamation (USBR); United States Gealgards Survers, Quality of Water Branch States Department of Inch Instructor, Surver of Reclamation (USBR); United States Gealgards Survers, Quality of Water Branch, States Gealgards Survers, Quality of Water Branch, States Department of Inch Instructor, Survers Or Surver, Distribution (USBR); Linted States Gealgards Surver, Quality of Alfords States Gealgards Survers, Quality of Manual Water States Organization of Mater and Pauer (LADMF); City of Las Angeles, Department of Water and Pauer (LADMF); City of Las Angeles, Department of Water and Pauer (LADMF); City of Las Angeles, Department of Water and Pauer (LADMF); City of Las Angeles, Department of Water and Pauer (LADMF); City of Las Angeles, Department of Water and Pauer (LADMF); City of Las Angeles, Department of Water and Pauer (LADMF); City of Las Angeles, Department of Water and Pauer (LADMF); City of Las Angeles, Department of Water and Pauer (LADMF); City of Las Angeles, Department of Water and Pauer (LADMF); City of Las Angeles, Department of Water and Pauer (LADMF); City of Las Angeles, Department of Water and Pauer (LADMF); City of Las Angeles, Department of Water Angeles, Department of Water Angeles, Department of Water Angeles, Las Angeles, Department of Water Angeles, Departmentor Angeles

32505-0-8 6-61 200 310

CENTRAL COASTAL REGION (No. 3)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Soor itie
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	Magne- Sodium
$ \begin{array}{c} P_{0}^{R_{0}} = 0.11 \\ P_{0}^{R_{0}} = 0.311 \\ P_{0}^{R_{0}} = 0.321 \\ P_{0}^{R_{0}} = 0.22 \\ P_{0}^{R_{0}} = 0.21 \\ P_{0}^{R_{0}} = 0.21 \\ P_{0}^{R_{0}} = 0.22 \\ P_{0}^{R_{0}} = 0.26 \\ P_{0}^{R_{0}} = 0.26 \\ P_{0}^{R_{0}} = 0.26 \\ P_{0}^{R_{0}} = 0.26 \\ P_{0}^{R_{0}} = 0.22 \\ P_{0}^{R_{0}} = 0.46 \\ P_{0}^{R_{0}$	of 25°C) a (Co) aum (No)
$P_{a_{a}}^{P} = 0.11$ $P_{b_{a}}^{P} = 0.11$ $P_{b_{a}}^{P} = 0.21$ $P_{b_{a}}^{P} = 0.22$ $P_{b_{a}}^{P} = 0.22$ $P_{b_{a}}^{P} = 0.22$ $P_{b_{a}}^{P} = 0.21$ $P_{b_{a}}^{P} = 0.24$ $P_{b_{a}}^{P} = 0.24$ $P_{b_{a}}^{P} = 0.24$ $P_{b_{a}}^{P} = 0.24$ $P_{b_{a}}^{P} = 0.22$ $P_{b_{a}}^{P} = 0.26$ $P_{b_{a}}^{P} = 0.46$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	60 9.6 96 659 8.1 3.03c 44
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	47 10.7 90 570 $\frac{7.8}{8.0}$ $\frac{30}{1.30}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	39 12.0 91 613 7.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35 13.0 93 667 7.8 5.2 5.21c
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	44 12.3 100 553 7.8 8.0 8.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49 12.6 110 659 8.0 5.07c
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	52 10.0 91 674 8.2 5.13c
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	62 7.9 81 698 $\frac{7.9}{8.1}$ $\frac{4.4}{5.25c}$ $\frac{4.4}{1.91}$
$\begin{array}{c} 0.2 \\ 0.0 \\ 0.00 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.04 \\ 0.46 \\ 0.46 \\ 560 \\ 292 \\ 292 \\ 0.46 \\ $	60 8.0 80 760 7.23 5.53c
1.5 0.02 0.02 292	68 8.0 87 829 7.8
	53 7.1 65 864 7.7 5.83c

Loborotory pH.

Sum of colicium and magnetum in epm. How (Fe), olumnum (KI), arterite (As), cospect (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexovolant chromium (Cr⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves.

Determined by oddition of analyzed constituents.

9 Gravimetric determinotion.

32505-D-H 6-61 200 STO h Amuel median and range, respectively. Colculated from analyses of diplicate monthly samples made by Collation Department of Public Health. Division of Laboratoris, or United Stores Dealer Health Service 1. Mineral analyses mode by United Stores Geological Survey, Duality of Mone Branch (USSS); United Stores Societies and Stores Control (USSHS); Societies of Mone Stores Societies of Mone Stores Societies and Stores Societies of Stores Societies and Stores Societies of Stores Societies and Stores Societies

WA
SURFACE
Р
ANALYSES

TER

CENTRAL COASTAL REGION (NO. 3)

								Miner	el cons	Mineral constituents in					1.			_				
- 6	e e	Discolved	Spacifi			F		-		$\left \right $	F	- involer	equivolents par million	E I			Totel dia-			- 101	4	A second second
6	<u></u>	in cfs in dF osygen	(micromhos PH of of 25°C) a b	मू ना न 2 हैं ()	Calcium Magne- (Co) (Mg)	Magne- sium (Mg)	Sedium (N a)	Ratos-Carbon-B (K) (CO ₃) ((ote (CO ₃) (icor- onete HC 0.3)	Sur - Cr tate r (SO4) (Chio- ride (CI) (N	NI- FIL trote ris (NO ₃) (F	Flua- ride (F)	Boran Silica (SiOg)	Other constituants	solved con solids rum In pom		Totol N.C. hpm	11 11 10 10 10 10 10 10 10 10 10 10 10 1	MPN/mi	by 1 by 1
							Two .	BAR CR	EEK ONE	TWO BAR CREEK ONE MILE NORTH OF BOULDER CREEK (STA. 232)	A AO HIL	OULDER (CREEK (S	TA. 23	2)							
0.1 5	57	7.6	73 640	7.3		3.84c	60 2.61		0.00	<u>182</u> 2.98	-14	40 0	0.7 0.01			Fe = 0.26 PO ₄ = 0.23	405		192			DWR
0.5	1 849	10.3 89	89 539	7.6 8.0		3,52c	$\frac{4_{*}0}{1_{*}74}$		0*00	<u>126</u> 2.06	- 10	29 0.82	0.2 0.00	01	0.1	Fe = 0.18 ABS = 0.0 PO_ = 0.23	340		176			
0.5 4	41	11.5 90	90 505	7.4													320					
0.3	38	11.8	88 548	7.5													350					
0.5 4	1	11.7 9:	95 463	$\frac{7_{*}3}{7_{*}6}$		2.94c			0.00	$\frac{104}{1.70}$		23 0.65	0.01			PO ₄ = 0.14	295		147	28		
0.3 4	47	11.11	94 563	7 <u>,7</u>		3,62c			0*00	$\frac{147}{2.41}$		30 0.85	0.00			PO ₄ = 0.14	360		181	4.2		
0.3	52	6*6	90 592	7 <u>,7</u> 8 <u>,1</u>		3.76c			0,00	<u>160</u> 2.62		32 0,90	0.3 0.00			PO ₄ = 0.17	375		188	2.8		
0.3	67	8.1 8	87 640	$\frac{7_{*3}}{8_{*2}}$		<u>3.86c</u>			00.00	<u>190</u> 3.11		42 0	0.5			PO4 = 0.25	405		193	0.9		
d.1 6	65	8.1 8	86 684	7.9							14	47 1.32 0	1.6 0.02			ABS = 0.0 $P0_4 = 0.27$	435			2.1		
0.1	54	6.7 6	62 7.8	7.6		4.08c					- Joi	26 0.73	$\frac{1,2}{0,02}$			PO ₄ = 0.32	455		204	2.0		
										_												

b. Leberatery p.H. c. Sum of colorum and mognasum in epm. d. hans (Fe), alummum (AI), asseric (A2), copper (Cu), tead (Pb), monganese (Mn), zinc (Zn), and hexardient chramium (Ci⁺⁶), reported here as <u>0.0</u> except as shown. d. Denived fram conductivity vs TDS curves

Datemined by addition of analyzed constituents.

Gravimetric determination.

32505-D-E 6-61 200 200 h Anual media and ronge, respectively. Calculated from analyses of duplicate monthy samples made by California Department of Public Health, Division of Laboratoria, or United Stores Public Health Service i Mineral analyses made by United Stores Caelong Neuer Bundl (SGS). United Stores Department of the Interior, Sueria of Reclamation (USBR), United Stores Public Health Service Control District (SSECCD). Headership (SSECD). Headership (SSEC). Distribution (SSEC) (United Stores Public Health Service (BSER), United Stores Public Health Service Department of Manual District (SSECCD). Headership (SSEC). Headership (SSEC), Headership (

CENTRAL COASTAL REGION (NO. 3)

		cent Hardness bid-Coliform ¹ Anolyzed ece- es CoCC3 ity MPN/mi by i ity Popin Company and by i			231 DAR	145		226	210	181 9.5	218 3.8	221 2.8	224 1.5	229	0	229 0.5	
ŀ	otet	aolide Polide			405	260	360	375	355	310	380	380	390	420	420	455	
	1	Other constituents			Fe = 0, 12 $Po_4 = 0, 32$	Fe = 0.24 ABS = 0.0 $PO_4 = 0.42$				Po4 = 0.18	PO ₄ = 0.19					Po4 = 0.32	
		(SiO ₂)	_														
u	nillion	- Boron (B)				0.1											
parts per militan	equivalents per million	Fluo- (F)		205) I	10	.10	_10	let	let.	1-1	len.	lo	let	10		let.	
ports p	vaients	NI- trate (NO ₉)		(STA.	<u>1.0</u> 0.02	<u>1.4</u> 0.02	0.0	0.5 0.01	0,5	0.01	2.0 0.03	0.00	0.9	0.0		0.8 0.01	
	inbe	Chio- ride (CI)		CREEK	$\frac{32}{0,90}$	14 0.39		24 0.68	21 0.59	19	$\frac{25}{0*70}$	$\frac{28}{0,79}$	34 0,96	42 1,18		$\frac{31}{0,87}$	
	ç	Sul - fate (SO ₄)		OULDER													
	etituent	Bicar - bonate (HCO ₃)		EK AT B	<u>219</u> 3.59	100 1.64		<u>195</u> 3.20	$\frac{170}{2*79}$	$\frac{151}{2*47}$	$\frac{194}{3.18}$	200 3.28	$\frac{209}{3*42}$	<u>222</u> <u>3.64</u>			
	Minerol caretituents in	C or bon- ote (CO ₃)		BEAR CREEK AT BOULDER CREEK (STA, 205)	00.00	0*00		0,00	0*00	0,00	0 <u>000</u>	0*00	2 0,07	0*00			
:	Ňio	Potos- (sum (K)		μ.											ratory		
		Sodium (No)			4 <u>3</u> 1.87	22 0.96							38 1.65		y labb		
		4agne- 8ium (Mg)			4.62c	2.90c		4 <u>*52</u> c	4.20c	3.62c	4 <u>,36</u> c	4.42c	4.48c	4.58c	Sample broken by laboratory	4 <u>.58</u> c	
		Calcium (Ca)													ample		
	_				7 <u>,9</u> 8,1	7 <u>.8</u> 7.8	7.7	<u>8.0</u> 8.1	$\frac{7,4}{8,2}$	$\frac{8_{*}1}{7_{*}8}$	$\frac{8*2}{8*0}$	8.2 8.3	7 <u>*7</u> 8 <u>*4</u>	7.6	7.8	7.8	
	Spacific	(micramhoe pH ot 25°C) <u>e</u>			626	400	559	580	551	484	587	593	608	656	650	706	
		gen (n %Sat	_		89	16	95	96		101	109	106	95	89			
		Dieso osy PPM			9.5	10.0	11.3	12.6		12.2	12.0	10.7	9.2	8.8	8.9	8.4	
		e e E C L			55	52	46	39	42	45	52	59	63	61	61	55	
		Oischarge Temp In cfa in of			1	2	۳	2	4	5	e	2.5	2	e	1		
		P.S.T.			10-7-63 0915	11-6-63 1400	12-9-63 1600	1-14-64 1140	2-19-64 1030	3-24-64 1140	4-21-64 1230	5-12-64 1325	6-24-64 1015	7-21-64 1015	8-18-64 1030	9-23-64 1010	

b Laboratory pH.

c Sum of calcium and magnesium in epm.

1 Into (Fe), advinuous (C⁺¹⁶), reported (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (C⁺¹⁶), reported here as $\frac{0.0}{0.00}$ except as shown.

Derived fram conductivity vs TDS curves

Determined by addition of analyzed constituents.

g Gravimetric determination.

Annul median and mage, respectively. Calculated from andyses all duplicate monthy samples made by California Department of Public Healin Structures, or United Stores Public Healin Structures Mareel analyses made by United Stores Geological Survey, Quality of Water Baroch USSS), United Stores Department of the Interior, Burocu of Reclamation (USBR), United Stores Public Healin Structures Control District 1986;CEO; Mernagement of Submers (MSD); Las Angeto Department of the Interior, Burocu of Reclamation (USBR), United Stores Public Healin Structures Control District 1986;CEO; Mernagement of Stores (MSD); Las Angeto Department of Merna on Power (LADMP), City of Las Angetes, Department of Public Healin Structures (USPHS); San Barnardinos County Flood Public Healin (LBDP); Erinos Leadorates, Inc. (TTL), sa Californa (MRD); Rases (MSD); City of Las Angetes, Department of Public Healin (LEDPH); City of Las Department of Public Healin (LEDPH); City of Las Department of Public Healin (LEDPH); City of Las Department of Merna and Power (LADMP); City of Las Angetes, Department of Public Healin (LEDPH); City of Las Department of Public Healin (LEDPH); City of Las Department of Public Healin (LEDPH); City of Las Department of Merna and Power (LADMP); City of Las Angetes, Department of Public Healin (LEDPH); City of Las Department of Public Healing (LEDPH); City of Las Department of Public Healing (LEDPH); City of Las Angetes (LEDPH); City of Las Angetes (LEDPH); City of Las Department of Public Healing (LEDPH); City of Las Department

32202-D-H 6-01 200 2M

ANALYSES OF SURFACE WATER 1

CENTRAL COASTAL REGION (NO. 3)

3 Т

		Anolyzed by 1		DWR												
		bid - Coliform" Analyzed Ity MPN/mi by 1 by 1							9.5	4*0	0*05	1.5	2.5	0.8	2.9	
┝	ř,								6	4	-"O			ő	6	
		Hardness es CoCO ₃ Totat N.C. ppm ppm		82	59		79	73	65	78	81	86	88		94	
	Per-	t i s			_											
L	101	solved solids in pom		135	105	130	135	130	120	135	140	150	150	160	155	
		Other constituents		$Pe = 0.02$ $Po_4 = 0.19$	ABS = 0.0 $PO_{4} = 0.21$	Po4 = 0.07	Po4 = 0.09	Color = 0 PO ₄ = 0.08	Po4 = 0.08	PO4 = 0.08	PO4 = 0.18	PO4 = 0.13	Po4 = 0.20	ABS = 0.0 Po ₄ = 0.25	PO4 = 0.25	
	1.	Boron Silica (B) (SiO ₂)								-						
illian	millior	Fluo- rids (Bor (F)	<u></u>													
parts per million	nts par	NI- FI trats (NO ₃) ((STA, 208)	0,7 0,01	0.5	0.2 0.00	1.2 0.02	0.3	1.5 0.02	0.1 0.00	0.2 0.00	1.1 0.02	0.00	1.4 0.02	1.0 0.02	
part	equivalants par million	Chio- rids 1 (Ci) (h	CREEK (7.4 0.21	8.8 0.25		9.9 0.28	8.8 0.25	8.3 0.23	9 <u>.5</u>	9.7 0.27	11 0.31	<u>5.9</u> 0.17	12 0.34	11 0.31	
	£	Sul - (fate (SD4)	BOULDER										- 10			
	Minsrol constituents	Bicar - bonats (HCO ₃)	BOULDER CREEK AT BOULDER CREEK	99 1.62	<u>57</u> 0.93		85 1.39	80 1.31	66 1+08	$\frac{87}{1,42}$	92 1.51	<u>102</u> 1.67	107 1.75			
	rol con	Carban- ote (CD ₃)	DULDER CI	0.00	0 <u>0,00</u>		0 <u>*00</u>	0*00	0 <u>*00</u>	0 <u>*00</u>	0.00	00.00	00*0			
:	Wine	Potas- C stum (K)	× _													
		Sodium (Na)		10 0.43	$\frac{10}{0_*43}$							$\frac{11}{0,48}$				
		Mogns- sum (Mg)		<u>1,64</u> c	<u>1,18</u> c		<u>1,58</u> c	<u>1.46</u> c	<u>1, 30</u> c	<u>1.56</u> c	<u>1,62</u> c	<u>1,72</u> c	<u>1,76</u> c		1,88c	
		Calcium (Ca)														
		<u>م</u> اه ک		7 <u>*5</u>	7.5	7.4	$\frac{7,7}{7,8}$	7 <u>,4</u>	7.3	7 <u>,7</u>	$\frac{7.9}{8.0}$	7 <u>.3</u> 8.0	$\frac{7.5}{8.0}$	8.0	7.6	
	Specific	conductance pH (micramhos pH ot 25°C) e		207	166	205	208	198	185	207	214	235	235	245	242	
T		gen (%Sot		94	95	97	98		105	104	98	92	93	66	34	
		Disso axy ppm		9.8	10,3	11.5	12.2		12.5	11.5	10.5	9°0	9.3	9*6	9.7	
		Tenp in of		57	53	97	43	45	46	52	54	62	60	63	57	
		Dischorge Temp In cfs in of		e	12	Ø	7	αο	10	2	ę	4	4	ŝ	4	
		Dote ond time ecompled P.S.T.		10-7-63 1105	11-6-63 1330	12-10-63 1110	1-14-64 1245	2-19-64 0955	3-24-64 1020	4-21-64 1130	5-12-64 1100	6-24-64 0950	7-21-64 1045	8-18-64 1140	9-23-64 0955	

a Field pH.

Laboratory pH

Sum of colcium and magnetsum in spm. In the set (Cu), lead (Pb), manyanese (Mn), zinc (Zn), and heraralent chromium (Cr⁺⁵), reported here as $\frac{0.0}{0.00}$ accept as shown. Iron (Fe), olumnum (A1), accept Sum $\frac{0.00}{0.00}$ Sum of calcium ond magnesium in epm.

Derived fram conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination. .

ء

32505-0+1 6-61 200 SPO Amed medion and respectively. Calculated from analyses of dupicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Stores Public Health Service Maned analyses made by United Stores Geological Survey, Ocality of Mane Bacer, Usos Dopartment of his Interves, Burcou of Reclamation (USBR), United Stores Public Health Service Control District (BGECD), Attractional Rubo, Las Angela Department of the Interve, Burcou of Reclamation (USBR), United Stores Public Health Service Public Health (LDBP), Free and Fering Leaderates, Inc. (TL), Ser California (MD), Las Angelas Department of Mane and Pacity of Las Angelas, Department of Public Health Service Public Health (LDBP), Free and Fering Leaderates, Inc. (TL), Ser California Order Resources (DWR); Sity of Las Angelas, Department of Public Health (LDPP), Chy of Lang Baceh, Department of Public Health (LDBP), Free and Fering Leaderates, Inc. (TL), Ser California Order Resources (DWR); Sity of Las Angelas, Department of Public Health, LDPP), Chy of Lang Baceh, Department of Public Health (LDBP), Free and Fering Leaderates, Inc. (TL), Ser California Order Resources (DWR); Sity of Las Angelas, Department of Public Health, LDPP), Chy of Lang Baceh, Department of Public Health, LDPP), Chy of Lang Baceh, Department of Public Health, LDPP), Chy of Lang Baceh, Department of Public Health, LDPP), Chy of Lang Baceh, Department of Public Health, LDPP), Chy of Lang Baceh, Department of Public Health, LDPP), Chy of Lang Baceh, Department of Public Health, LDPP), Chy of Lang Baceh, Department of Public Health, LDPP), Chy of Lang Baceh, Department of Public Health, LDPP), Chy of Lang Baceh, Department of Public Health, LDPP), Chy of Lang Baceh, Department of Public Health, LDPP), Chy of Lang Baceh, Department of Public Health, LDPP), Chy of Lang Baceh, Department of Public Health, LDPP), Chy of Lang Baceh, Department of Public Health, LDPP), Chy of Lang Baceh, Department of Public Health, LDPP), Chy of Lang Baceh, Department of Public Hea

CENTRAL COASTAL REGION (NO. 3)

Stand (v) Patter (c) Stand (c) Patter (c) Stand (c) Fund (c) Stand (c) <	Spacific				finerol co	Minerol constituents in	' -	squivalents par million	ports par million volents par mill	lion		Totol Per		Tur-	£
SAN LORDERD RIVER AT BOULDER CREAK (SN, 227) $\frac{1}{0.01}$ $\frac{1}{3.32}$ $\frac{1}{1.47}$ $\frac{0.6}{0.01}$ $\frac{1}{3.32}$ $\frac{1}{1.43}$ $\frac{0.6}{0.01}$ $\frac{1}{1.41}$ $\frac{1}{2.33}$ $\frac{1}{1.63}$ $\frac{0.6}{0.01}$ $\frac{1}{1.41}$ $\frac{1}{2.33}$ $\frac{1}{1.63}$ $\frac{0.6}{0.01}$ $\frac{1}{1.41}$ $\frac{1}{2.33}$ $\frac{1}{1.63}$ $\frac{0.1}{0.01}$ $\frac{1}{1.64}$ $\frac{0.1}{0.01}$ $\frac{1}{1.64}$ $\frac{0.1}{0.01}$ $\frac{1}{1.64}$ $\frac{0.0}{0.01}$ $\frac{1}{1.64}$ $\frac{0.0}{0.01}$ $\frac{1}{1.64}$ \frac	Calcium M((Co)		Magne- sum (Ng)	um Potes (K) (K)	- Corbon- 010 (CO3)	Bicor- benets (HCO ₃)			Fluc- ride (F)	Baron Silic (B) (SiO		solved sod solids iur in ppm	Totol N	s bid - Colifor s lity MPN/ C	m Arolyze
Solutions for the AT monthlast clear, (5A), 22) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							-	_							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					AN LORENS	20 RIVER AT	BOULDER	CREEK (SI	CA. 227)						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8+0 8.1 5.13c	5.13			0*00	<u>239</u> <u>3+92</u>	68 1.9				Pe = 0.17 $Po_4 = 0.36$	455	257		DWR
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.540	2.540		10	0 <u>*00</u>	$\frac{86}{1,41}$	21 0,5		Im	0.1	Fe = 0.30 ABS = 0.0 PO ₄ = 0.63	225	127		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								0.2 0.00	10		$P0_4 = 0.21$	360			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u>4.60</u> c	4.60c			0,00	$\frac{195}{3*20}$	444 1.02				$PO_4 = 0.23$	390	230		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8+2 8+2 2+20c	<u>4.20</u> c			0*00	<u>166</u> 2.72	35				$\begin{array}{l} \text{Color} = 0\\ \text{PO}_{4} = 0.20 \end{array}$	350	210		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8 <u>.0</u> 7.8	<u>3.56</u> c			0.00	<u>146</u> 2.39	29 0.8				$PO_4 = 0.21$	310	178	9*5	
$\frac{0}{0.00} \frac{304}{3.34} \qquad \frac{2}{1.43} \frac{0}{0.00} \qquad Po_4 = 0.34 \qquad 405 \qquad 229 \qquad 2.6 \\ 0.00 \frac{9}{3.39} \qquad \frac{9}{1.66} \frac{9}{0.02} \qquad Po_4 = 0.23 \qquad 430 \qquad 238 \qquad 2.5 \\ \hline Po_4 = 0.23 \qquad Po_4 = 0.23 \qquad 575 \qquad 270 \qquad 2.8 \\ \hline ALBA CREEK (5TA, 245) \qquad ALBA CREEK (5TA, 245) \\ \hline \end{array}$	8.2 8.1	4.48c			0*00	<u>195</u> 3,20	46 1.3				$PO_4 = 0.23$	390	224	3.0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8.2 8.3	4.58c			0*00	<u>204</u> 3.34	<u>52</u> 1.4				PO4 = 0.34	405	229	2.6	
2.3 30.4 0.32 575 270 2.8 0.004 0.32 575 270 2.8	<u>4.76</u> c	4.76c	2.4	<u>6</u>	0*00	<u>219</u> 3, 59	1.6				$Po_4 = 0.23$	430	238	2.5	
	7 <u>*8</u> 5 <u>*39</u> c	5.39c					66 1.8				• PO4 = 0.32	575	270	2.8	
Deg a						ALBA CREI	EK (STA.	245)							
	6 <u>.8</u>						_								DWR

Lobaratory pH

: Sum of calcium and mognesium in epm.

Jum of celcium and anopherium in epm. Iron (F), oluminum (A), versici (C43), cooper (C44, leed (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (C⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown.

Derived fram conductivity vs TDS curves.

Determined by addition of analyzed constituents.

g Gravimetric determination.

32505-0-H 6-61 200 5P0 h Amuel melian and ronge, respectively. Calculated from analyses of duplicate monthly samples made by Colifornia Department of Public Health, Division of Laboratories, or United Stores Public Health Service i Manael analyses mode by United Stores Geological Survey, Danilyr of Waren Boach (USS); United Stores Laboratories, or United Stores Public Health Service Control District (SECFCD) Menoplicated Survey, Danilyr of Waren Boach (USS); United Stores Department of the Intrave, Survei of Reclamation (USBR); United Stores Public Health Service (USPHS); San Bearding County Flood Control District (SECFCD) Menoplicated Survey, Danilyr of Waren (Sanosh (USD); United Stores Public Health, Service (USPHS); San Bearding County Flood Data Cherlin (LBDP); Freinief Testing Lebertores, Inc. (TLL), ar California Department of Waren and Penet (LADPP); City of Los Angeles, Department of Public Health, EdPPH); City of Long Beach, Department of Data Cherlin (LBDP); Freinief Testing Lebertores, Inc. (TLL), ar California Department of Waren and Paulic Angeles, Department of Public Health, LaDPH); City of Long Beach, Department of Manaers (Data Cherlen Survey Santos) Data Cherlin (LBDP); City of Culture Department of Waren and Paulic Angeles, Department of Public Health (LBDP); City of Long Beach, Department of Manaers (Data Cherlen Santos) Data Cherlin (LBDP); City of Culture Department of Waren and Paulic Angeles, Department of Public Health (LBDP); City of Long Beach, Department of Manaers (Data Cherlen Cherlen (LBDP); City of Long Beach, Department of Angeles, Department of Angeles, Department of Manaers, Data Cherlen (Laborato); City of Long Beach, Department of Angeles, Department ANALYSES OF SURFACE WATER CENTRAL COASTAL REGION (NO. 3)

	by 1 by 1			DWR					DWR]
-	Herdnase bid - Coliform Anolyzed es CoCOs 119 MPN/mi by 1																
	C						7.5						0.7	0*0	0.05	0.9	
	drase CoCO _S	Totel N.C. pem ppm															
	T .	Toto					57						19	65	68	78	
	Cent Cent	E									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
Tet	eolide eolide	<u>e</u>	_						125	115	115	110	110	115	120	140	
	Other constituents						$PO_4 = 0.30$						PO ₄ = 0.02	Po ⁴ = 0°04	Po ₄ = 0.07	PO4 = 0.08	
	Boron Silico	(BOIC)															1
n	Boron	P)															
porte per million squivolente per million	Fluo-							6					141				
orte pe olente	Ni -	(SON)	_ <u>_</u>				$\frac{1.3}{0.02}$	 57A. 21					$\frac{1.2}{0.02}$	0.4 0.01	0.00	$\frac{1.5}{0.02}$	
a vive	Chio-	(ci)	IA. 24				8.2 0.23	DALE (S					$\frac{6*2}{0*17}$	$\frac{6.4}{0.18}$	$\frac{7.0}{0.20}$	$\frac{9_{*}1}{0_{*}26}$	
£	Sul -	(so,)	- S Eek (S		_			BROOK									1
ituente	Bicar-		ALBA CREEK (STA. 245)				64 1,05	REEK AT					80 1.31	89 1,46	92 1.51		
Minerol comstituents in	Corbon - B	cos)					0,00	CLEAR CREEK AT BROOKDALE (STA. 210)					0.00	0*00	0*00		
Miner	Potos- Co	0					10							10	10		-
	Sodium Po	<u>;</u>															1
	Magne- 50	(6w					1,14c						1.22c	1.30c	1,36c	1.56c	
	Colcium	ō,															1
<u> </u>	PH Col	- 0.18		7.8	6.8	6.8	7.1		7.5	7.6	7.4	7.4	7.5	7 <u>*7</u>	7.7	7+6	1
acific	tromhos 250 C)	-		190	177	206	191		189	176	170	162	162	173	181	213	1
So	d Con	Sof		96	86	87	98		94	97	59	66	66	98	98	93	-
	orygen	ppm %Sof		10.7	10,1	10.4	11.5		6.6	10.7	11.3	11.5	11,7	11.4	10.3	9°3	-
	d La la	٩		51 1	47 1	46 1	47 1		56	52 1	48 1	48	47 1	48 1	56 1	19	
-	Dischorge Tamp Dissolvad conductance in cfa in af osygen (micromhos			0.5	0.1	0,1	0.1		0.5	1	1	1		0.5	0.5	0.3	
	Date ond time sampled			11-7-63 1130	12-10-63 1250	1-14-64 1420	3-25-64 1015		10-8-63	11-7-63 1050	12-10-63 1135	1-14-64 1405	3~24-64 1645	4-22-64 0845	5-12-64 1440	9-23-64 1240	

o Field pH

32505-0-8 6-61 200 370

b Laboratory pH.

c Sum of colcium and mognesium in spm.

c Sum of calcium and magnumstum in spin. d Inco (Fa), oluminum (AI), arsenic (Aa), capper (Cu), lead (Pb), manganese (Mn), and hexavalent chromium (Cr⁺⁴), reported here as 0.00 except as shown d Inco (Fa), oluminum (AI), arsenic (Aa), capper (Cu), lead (Pb), manganese (Mn), and hexavalent chromium (Cr⁺⁴), reported here as 0.00 except as shown a Darivad from conductivity vs TDS curves

Datemined by addition of analyzed constituents.

⁹ Gravimetric determination.

h Annual median and range, reserving. Coloulored from analyses of duplicate monthly samples made by Collinania Department of Public Health, Division of Laboratorias, or United Stores Public Health Service 1. Minwell analyses made by United Stores Geological Survey, Coulding Plane Bayerando and Informatics, Survey Could Stores Coulding Plane Report (2005). United Stores Public Health Service (1994b); Sion Bayerando and District (SSEFCD). Menetophicater of Stores Collogical Survey, Coulding Plane Report (2004). The analyses and support and the Interior, Survey Councy Flood Councy Flood Councy Flood District (SSEFCD). Menetophica Menetomer Galaxian Collogical Strate Colonian (Mar), Las Angleis Disportment of Menetor, Survey Councy Flood Public Health, Serve Councy Flood Public Councy Flood Councy Flood Councy Strate Collogical Strate of Servey Councy (SSEP), Menetophicater of Servey Councy Flood Flood Councy Strate Scological Survey Councy Councy (SSEP). Menetophica Menetophica

ANALYSES OF SURFACE WATER

CENTRAL COASTAL REGION (NO. 3)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											Minero.	I const.	Mineral constituents in		ports	ports per million	ion multion	1		1.1.1					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Date					Specific					-		-		in and	and c		-			Par-		Tur-	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ond 1m		10 CI		ygen vgen	(micramho	H C	Caterum	Magne-	dium Pot	-eo.	-bon- Bi					- Bor	on Silic	Other constituents	solved	cent eod - Ho Jum	Hordness b es CoCO ₃ n	bid - Coliform" Analyzed	N/mi	Anolyzed by 1
0.1 56 4.2 4.0 2.9 2.1 1 49 10.4 91 28 2.3 1 47 11.7 99 2.9 2.3 1 47 11.7 99 2.3 2.3 1 47 11.7 99 2.3 2.3 1 47 11.7 99 2.3 2.3 1 50 11.0 97 2.3 2.70e 1 50 11.0 97 2.3 2.70e 0.00 1.76 0.05 1 50 11.0 97 2.3 2.70e 1.76e 0.06 1.76 0.07 1 54 10.0 93 2.22 1.76e 0.07 1.76e 0.07 1 54 10.0 57 2.73e 1.77e 0.06 1.76e 0.07 0.5 61 7.7 7.9 7.76e 1.77e 0.76e 0.07e<	P.S.T.	_	_	mqq	%So		01.0		(6 _W)	-	9	H) (FO)		\rightarrow	+	-		Part of the second seco	- 1	u 60m	0 d	PPM PPM			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			_		_							_	_	_	_										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												108	JLDER CR	LEEK (STA	· 247)										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10-10-63						7.1						_												DWR
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11-7-63						7.3																		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12-10-63 1050			-			7.2																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1-14-64 1025	1	39				7.5		2.10c		-10		71	0.0		<u>5</u>			PO ₆ = 0.36			105			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3-24-64 1035	2					7.3		<u>1.42</u> c		-10°		52 1.85			03			Po ₄ = 0,10			11	20		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4-21-64	1.					7.2		2.00c		0		69 13	0.0		03			$PO_{4} = 0.43$			100	4.5		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5-12-64 1040						7 <u>.3</u> 7.8		2.04c		- lo		77	0 3		00			$P0_{4} = 0.07$			102	4.8		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6-25-64 1205	0				386	7.6			27	~ o		75			8			PO ₄ = 0.06			110	5.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-21-64						7 <u>,9</u>		<u>2,32</u> c		~lo		92 56	<u> </u>		<u>5</u>			Po ₆ = 0,30			116	1.9		
0.5 53 3.7 34 375 2.3 2.0 0.5 23 3.7 34 375 2.56 2.566 2.566 2.566 2.0 0.03	8-18-64 1115	•0					7.3							0.0		<u>6</u>			ABS = 0.1 $PO_{4} = 0.47$				11		
	9-23-64 0920	0.					7.3		2,58c					0.0		03			ABS = 0.0 $PO_4 = 0.16$			129	1.2		
															_										

b Laboratory pH.

Sum of colcium and magnetum in epm. Iren (Fe), auduturum (AI), arsenic (A2), lead (Pb), mangarese (Ma), zinc (Za), and hexavalant chromium (C.¹⁵), reported here as $\frac{0.0}{0.00}$ except as shown.

Determined by addition of analyzed constituents. Derived from canductivity vs TDS curves

Gravimetric determination.

32305-0-H 6-61 200 3P0 Amuel median and range. reservely Calculated from analyses of duplicate monthly samples made by Calchonia Department of Public Health, Division of Laboratories, or United Stores Public Health Sevice. Mineral analyses made by United Stores Geological Survey, Duclity of Water Borach USSN, United Stores Public Health Sevice. (USSH) Stores Department of his Interior. Survey of Reclamation (USBR), United Stores Public Health Sevice. (USPHS) : San Burnadino County Flood Control District 166CFCD). Attractional and the Control Stores Department of the Interior. Survey of Reclamation Outsolby), United Stores Public Health Sevice. (USPHS) : San Burnadino County Flood Control District 166CFCD). Attractional and the Control Stores Counces of Water and Power (LADMF), City of Los Angeles, Department of Public Health, Emplity, Termool Testing Laboratives, Inc. (TLL), An Colfman Guman, Offen Stores (DWR), Saviet Stores (LOWF), City of Los Angeles, Department of Public Health, Emplity, Emplity, Emplity, Emplity, Saviet Stores (DWR), Saviet Stores (LOWF), City of Los Angeles, Department of Public Health, Emplity, France Testing Laboratores, Inc. (TLL), An Control Stores (DWR), Saviet Stores (LOWF), City of Los Angeles, Department of Media Resources (DWR), Saviet Stores (DWR), Saviet Stores (DWR), City of Los Angeles, Department of Public Health, Emplity, City of Los Angeles, Department of Media. ANALYSES OF SURFACE WATER CENTRAL COASTAL REGION (NO. 3)

	A noiyzed by 1				USGS												
	bid - Coliform Ar				62. U	620. 230.	2.3	•13 4.6	2.3	6.2 .21	6.2 .62	6.2	6.2 2.3	62. 62.	230. 62.	2.3	
	Id - Col					20	15		30	15	~	5	~ ~	10			
-		U K Z G			10	19	18	19	16	14 1	14	14	16	14 1	11	11	
	Hordnese b	Totol			174	157	164	166	138	140	140	138	150	158	165	183	_
	i i				12	12	13	13	13	14	14	13	13	13	14	17	
Totel	solved solids	mag uj										180				234	
	Other sectored	- 1	1				As = 0.00					As = 0.00 ABS = 0.00 Po4 = 0.00				Ae = 0.00 ABS = 0.1 PO ₄ = 0.00	
	Silico	(2:0 ⁴)										17				16	
lion	5	8			0*0	0.2	0*0	0*0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
million per mil	Fluo-			96) 								0.00					
ports par million volants per mil	1 Z	(⁶ 0N)		(STA. 9								1.9 0.03				$\frac{1.0}{0.02}$	
ports par million equivolants per million	Chio-	(CI)		HILL (7 0.20	6.2 0.17	7.5 0.21	7.0 0.20	7.0	4 <u>.5</u> 0.13	5.5 0.16	6.0 0.17	5.5 0.16	5.5 0.16	6.0 0.17	8.0 0.23	
Ē	- Sul -	(so.)		L MORGAN								26 0.84				25 0.52	
stituents	Bicor-	(HCO ₃)	_	UVAS CREEK NEAR MORGAN HILL (STA.	<u>186</u> 3.05	<u>168</u> 2.75	<u>170</u> 2.79	<u>159</u> 2.61	<u>141</u> 2.31	<u>134</u> 2+20	<u>136</u> 2+23	$\frac{151}{2.47}$	<u>163</u> 2.67	$\frac{165}{2*70}$	$\frac{160}{2 \cdot 62}$	210 3.44	
Minarof constituents		(c 0 3)	_	UVAS CR	7 0+23	0,00	4 0.13	10 0.33	4 0.13	10 0.33	9 0,30	0 0*00	0,00	5 0,17	14 0.47	0 <u>*00</u>	
M	Potos-	(K)										1.0 0.03				1.6 0.04	
	Sodium	(0N)			$\frac{11}{0.48}$	9.5 0.41	$\frac{11}{0.48}$	$\frac{11}{0.48}$	9.3 0.40	10 0.44	$\frac{10}{0*44}$	9.3 0.40	10 0.44	$\frac{11}{0.48}$	$\frac{12}{0_*52}$	$\frac{17}{0_*74}$	
	Megne-				3.48c	<u>3.14</u> c	3.28c	<u>3, 32</u> c	2.76c	2.80c	2,80c	13 1,11	3.000	<u>3.16</u> c	<u>3,30</u> c	19 1.56	
	Colcium	(Co)										33 1,65				42 2.10	
	۲.	a.!»			7 <u>*9</u> 8 <u>*5</u>	7.2 8.1	$\frac{8.1}{8.4}$	<u>8.4</u> 8.5	8.4 8.4	$\frac{8_{*}4}{8_{*}6}$	8.4 8.9	8.2 7.7	8.2 8.2	8.5 8.5	$\frac{8.4}{8.7}$	8.3 8.1	
ana i fio	conductance (micromhos PH	10-07 ID			359	334	34.7	349	295	299	298	306	312	333	345	388	
<u> </u>	25	%Sot			112	92	117	106	136	163	186	116	106	128	168	129	
	Dissolvad	maa			9*6	9.2	12.9	11.9	14.5	16.5	17.0	11.8	10.3	10.3	13.1	11.5	
	Tamp o F		-		73	59	52	50	54	58	67	58	62	79	83	69	
	Dischorge Tamp in cfs in oF				15 est.	20 est.	15 est.	10 est.	5 est.	5 est.	5.0	18.9	22.7	15.7	2.2	4 est.	
	Dots and time	P.S.T			10-3-63 1200	11-7-63 1100	12-5-63 1410	1-9-64 1320	2=5-64 1215	3-4-64 1145	4-9-64 1415	5-7-64 1045	6-9-64 1215	7-7-64	8-5-64 1220	9-4-64 1110	

e Field pH.

b Leboretary pH.

e Sam of calcium and megnesum in spm. d Iren (Fe), aluminum (A1), ersenic (As), copper (Cu), leed (Pb), monganese (Mn), zinc (Zn), and hero-alent chromium (Cr⁺⁶), reported here es 0.00 except as shown.

Derived from conductivity vs TDS curves
 f Determined by addition of analyzed constituents.

Gravimetric datermination. •

Annol median and renge, respectively. Colculated from analyses and applicate menthly complex media by Collitania Deperment of Public Health, Division of Leboracines, or United Stores, Public Health Strice Manuel analyses and by United Stores Goological Survey, Ouality Marces Dogenment of Information Survey of Reclamation (USBR), United Stores, Public Health Strice Consol District (SBCFCD), Manuel Constrained and Marces Dogenment of Marces and Pear (LADMP), City of Los Angeles, Department of Public Health (LBDP), Themadi Testing Leboratores, Inc. (TL), or Collitania Usano Usano, Survey, Organiana of Public Health (LBDP), Themadi Testing Leboratores, Inc. (TL), or Collitania Oscieles One Strates (DARP), City of Long Bacek, Department of Public Health (LBDP), Themadi Testing Leboratores, Inc. (TL), or Collitania Oscieles Oscieles Oscieles Strates, Department of Neuroscieles Consol District (Bacht, Darby), City of Long Bacek, Department of Strates and Provide Consoling Strates Consoling Strates (DAR), City of Los Angeles, Department of Neuroscieles, Department of Neuroscieles Consoling Strates, Department of Neuroscieles Consoling Strates, Department of Neuroscieles, Department of Neuroscieles Consoling Strates, Department of Neuroscieles (DAR), City of Long Bacek, Department of Neuroscieles Consoling Strates Strates, Department of Neuroscieles Consoling Strates S

^{32505-0-6 6-61 200 370}

ANALYSES OF SURFACE WATER

CENTRAL COASTAL REGION (NO. 3)

					Sectific					Min	arol con	Minarol constituents	e e	equive	parts per million equivelants par million	million bar mill	lion			Tetei					
Dets and time somplad P.S.T	Dischorga Tamp in cis in of	a Tamp in of		Dissolved osygen ppm %Sat	conductance (micromhos at 25°C)	E elo	Celcium (Ce)	Magne- sium (Mg)	Sodium (No)	Potos- sium (K)	Cerbon - 615 (CO ₃)	Bitor- bonds (HCO ₃)	Sul - tota (SO ₆)	Chio- rida (CI)	Ni- trata (NO ₃)	Fluo- rida (F)	Beron Sil (B)	Silice (SiO ₂)	Other constituents	apilos apilos antida	11-5	Merdnass es CoCO ₃ Total N.C. Ppm ppm	Mardnass bid - Coliform ^h Analysee as CoCO ₃ liy MPN/mi by i Total N.C.	aliform ^h APN/ml	Andlyce by 1
											ENAYAZ	ZAYANTE CREEK AT ZAYANTE (STA. 234)	AT ZAY	ANTE (S.	TA. 234)										
10-8-63 1330	0.8	58	10.1	66	662	8.1 8.2		5,19c	42 1,83		0*00	<u>248</u> 4.06		29 0.82	$\frac{1_{*2}}{0_{*}02}$			Po4	= 0.62 = 0.00 4 = 0.51	435		260			DWR
11-6-63 1110	4	52	10.2	92	481	7 <u>.9</u>		<u>3.62</u> c	$\frac{27}{1.17}$		0*00	142 2,33		19 0.54	<u>1.6</u> 0.03			Pe AB PO	Fe = 1.3 Ma = 0.00 ABS = 0.0 PO ₄ = 0.61	315		181			
12-10-63 1420	2	42	11.9	94	631	7.9									0.00			PO4	4 = 0.32	415					
1-15-64 1250	1	40	13.4	103	653	8.1 8.2		5.31c			0,000	<u>230</u> 3.77		<u>27</u> 0.76	0.6 0.01			PO	16.0 - 4	430		266			
2-20-64 0925	2	64			626	<u>Z.5</u> 8.1		5.01c			0*00	<u>209</u> <u>3,42</u>		22 0.62	0°.0			8	PO ₄ = 0.30	410		251			
3-25-64 1430	2	95	12.2	102	600	8.2 8.0		4.80c			0*00	205 3.36		22 0,62	0.6 0.01			P0,4	4 = 0.32	395	10	240	2.7		
4-22-64 1330	1	53	11.6	901	664	$\frac{8.4}{8.1}$		<u>5,21</u> c			0*00	236 3.87		36 1.02	1.8 0.03			PO	- 0.08 - 0.34	435		261	2.2		
5-13-64 1330	1.5	58	10.8	105	672	$\frac{8.4}{8.4}$		5,31c			4 0.13	<u>242</u> <u>3.97</u>		31 0,87	0.2 0.00			PO	P0 ⁴ = 0.40	440		266	0.5		
6-23-64 1330	1.5	67	0*6	97	686	7 <u>.9</u> 8.3		<u>5.37</u> c	$\frac{40}{1.74}$		0*00	<u>256</u> 4,20		<u>33</u> 0.93	0.9			2	PO ₆ = 0.37	450		269	2.5		
7-22-64 0830	1	58	9.8	96	733	7 <u>.7</u> 8.4		<u>5.59</u> c			4 0,13	<u>267</u> 4.38		37 1.04	1.0 0.02			2	Po ₄ = 0.50	480		280	0,2		
8-18-64 0740	1	56	9.6	16	754	8.1								42 1.18	0.4 0.01			PO	ABS = 0.0 Po ₄ = 0.51	495			3.6		
9-23-64 1530	0.8	63	0*6	93	775	8.3		6.01c						46 1,30	1.8 0.03			8	Po4 = 0.51	510		301	0.5		
a Field pH																		-			-	-			

b Laboratory pH.

Sum of calcium and magnesium in epm.

Into (Fa), aluminum (Ai), arsairs (Aa), cooper (Gu), lead (Pb), manganess (Ma), zinc (Za), and hexavalent chramium (G^{+6}), reparted here as $\frac{0.0}{200}$ except as shown. Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

Amuel median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Handlin Novisian of Laboratories, or United Storpes Public Handlin Service Minarol analyses and by United Storpes Geological Survey, Douliny Marce Bandling, Marce Boyers and Part Internet Control Distoriel Distoriel Distories (BCEC). Marce Bandling Storperation of Marce and Parce (LDMP); City of Los Angeles, Department of Marce and Parce (LDMP); City of Los Angeles, Department of Marce and Parce (LDMP); Son Benardino County Flood Control Distories (DESCEC). Management of Sustaines (MED): Las Angeles Department of Marce and Parce (LDMP); City of Los Angeles, Department of Parce and Parce (LDMP); City of Los Angeles, Department of Marce and Parce (LDMP); City of Los Angeles, Department of Marce and Parce and Parce (LDMP); City

32505-0-H 6-61 200 UM

3)
(NO.
REGION
COASTAL
CENTRAL

Ľ

Siles (33,2) Ohr constituents 0.000 Minime Properties Minime Minime Properties Minime Minime Properties Minime Minime Properties Minime Properties Minime Properies Minime Properies Minime Properies Minime Properties Minime Properis Minime Properties Minime Pr						Specific					Mine	al con	Mineral constituents in	·	80 PG	equivalente per million	r milli	6			Totel					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Date nd time	Diechorg- in cfe	a Tamp	Dieeo	p un	micromhos	Ha			minibo	otoe- C	arban -	Bicar -	Sul -	Chio-	- 12	-o-B	I S		and the second se	eolved solide	Cent	Hordness es CoCO3	24	Coliform MPN/mi	Anelyz
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	P.S.T.			mqq	%Sof	5	ماه			(0 N)	(¥)	(co3)	(HCD3)		-	(⁵ 0N)	(F)	(B)	- 1		H OBH		Pam apr			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										-	-	_	_			-								_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									_		NEWELL	CREEK O	NE MULE	EAST OF	- BEN LO	- ANOM	A. 219					_				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8-63 5	1	79	8.6		557	7.6 7.9			25 1.09		0,00	<u>152</u> 2.49		20 0.56	1.3 0.02			Fe Mn P04	0.46 0.00 0.16			228			DWR
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5-63 0	-	51	9.9		562	7.3									$\frac{1.0}{0.02}$			Colo Fe PO4	r = 10 = 0.51 = 0.30						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5-64	-	47			581	7 <u>,3</u> 8,1		5.00c			0.00	$\frac{162}{2*66}$		20 0.56	1 <u>,5</u> 0,02			P04	• 0.25			250			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5-64		53			562	7 <u>*7</u>		4.78c			0.00	<u>164</u> 2.69		18 0.51	0,9 0,01			P04	• 0,16			239	3.1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-64	-	51			553	7.8		4.64c			0,00	<u>162</u> 2.66		18 0,51	0, 5 0, 01			P04	- 0.16			232	3.7	_	
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-64 5	1	58			553	7.7 8.0		4.660			0,00	$\frac{164}{2.69}$		20 0,56	0.3			P04	• 0.16			233	2.7		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6-64 5	-1	54			552	$\frac{7.3}{8.1}$	_		$\frac{21}{0,91}$		0,00	$\frac{166}{2*72}$		20 0,56	$\frac{1.2}{0.02}$			Po	0.13			233	3.5		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1-64 0	1	58			538	$\frac{7.4}{8.1}$		4.56c			0*00	$\frac{162}{2.66}$		18 0.51	0.00			PO	• 0.21			228	1.5		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8-64	1	55			571	7.4								20 0.56	0.6 0.01			ABS PO4	• 0.0 • 0.29				1.6		
0.3 57 9.5 92 106 1.29 0.5 43 10.6 92 366 2.6 2.6 2.0 2.5 43 10.6 32 366 2.6 2.0 2.0 2.0 2.0 2.0	2-64 0	1	53			574	6.0		4.88c						20 0.56	$\frac{1,7}{0,03}$			Po4	• 0* 99			244	5.8		
0.3 57 9.5 92 106 <u>7.9</u> 0.5 4.9 10.6 92 366 <u>7.6</u>		-										LOVE CI	TA NEER AT	BEN LOW	, ord (ST.	N. 216)										
0.5 49 10.6 92 366 7.6	8-63 0	0.3				⁴⁰⁶	7.9														265					DWR
	7-63	0.5				366	7.6														240					

b Laboratory pH

iere as 0.00 except as shown. Sum of colcium and magnessum in epm. Iron (Fe), aluminum (AI), arsenic (A3), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Ct⁺⁶), repr

Derived from conductivity vs TDS curves. .

Determined by addition of analyzed constituents

9 Gravimetric determination.

h. Annual media and range, resectively: Calculated from analyses of duplicate monthy samples mode by California Department of Public Health, Division of Laboratories, or United Stores, Public Health, Service. 1. Manual analyses mode by United Stores, Caolity of Yeare Boorshow, USCS3: United Stores, Distance and in Intrans, Burnana, Burnana, Burnana, United Stores, Public Health, Service (USPHS); 5 an Bernardine County Flood Control District (SBCFCD), Manual Stores California California USPC3: List Anapelies, Department of Intrans, Burnana Anaples, Department of Xeare and Public Health, Service (USPHS); 5 an Bernardine County Flood Department of Health (EDPP), Health Service of Samual California Department of Meeting as indicated, Department of Public Health (EDPP), Farmal Testing, Laboratores, Inc. (TTL), or Goldman Department of Meetic Cale.

32505-0-H 6-61 200 GPO

ANALYSES OF SURFACE WATER

CENTRAL COASTAL REGION (NO. 3)

						Snacific	-				Minsi	ral con	Minsral constituents	Ē	gorts psr million equivalents psr million	ports psr million volants psr mill	million .	=		Total		-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ond time	Dischor in cfs	ge Tem	Dist.	solve d iygen	conductor (micromh	PH BH	Caterum	Mogne-	d multo	otas- C	orbon -	Bicor-		Mia-	-14	- Ba	ron Silic	1	solved solids	d - es Col	Did sa	- Coliform ^h MPN/ml	Andyse by 1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	P.S.T.		_	Ead	%Sat	3	ماه 5	(Ca)	(6M)	(0 N)	(K)	(co ₃)	(HCO ₃)	-	-			B) (SiC		maa ri	Totel	N C	E	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										_		_			_	_								
												LOVE C	REEK AT 5	BEN LOMO	ND (STA.	. 216)								
	2-10-63 225	0.3				367	7.4													240				DWR
	15-64	0.3				390	$\frac{7.8}{8.0}$		2 <u>.94</u> c	-		0.00	140 2.29	10		1.01			Po ₆ = 0.59	255	147			
	19-64	0.5				361	$\frac{7*6}{7*8}$		2.74c			0.00	$\frac{129}{2.11}$	0		0.02			Color = 0 PO ₄ = 0.55	235	137			
	25-64 00	0*5		12.6		342	$\frac{7*9}{7*7}$		2,56c			0,00	$\frac{123}{2.02}$	0		1.3			$P0_4 = 0.51$	220	128	4	2	
$ \begin{bmatrix} 0.3 & 53 & 10.4 & 95 & 400 & \frac{7.6}{6.3} & \frac{7.3}{2.766} & \frac{2.3}{0.1} & \frac{12.3}{2.3} & \frac{2.2}{0.1} & \frac{0.1}{0.00} & \frac{12.3}{2.73} & \frac{0.1}{0.00} & \frac{12.9}{2.73} & \frac{0.1}{0.00} & \frac{12.9}{2.73} & \frac{0.1}{0.00} & \frac{12.9}{2.73} & \frac{0.1}{0.00} & \frac{12.9}{1.00} & \frac{12.9}{0.00} & \frac{12.9}{$	22-64 35	0.3		11.5		391	8.0 7.9		2.94c			0*00	146 2.39	0		0.2 1.00			Po ₄ = 0.52	255	147		2	
	13-64 30	0.3		10.4		408	7.8		2.96c			0*00	$\frac{153}{2,51}$	10		00.1			$PO_4 = 0.75$	265	148	°		
0.3 38 9.2 90 467 2.3 0.3 0.45 1.3 Dry 1 1 1 1 1 1 1 1 Dry 1 1 1 1 1 1 1	21-64 00	0.3		9.1		436	7.6 8.3		<u>3,30</u> c		10	0.00	170 2.79	-16		00			$PO_{\Delta} = 0.74$	285	165	0.		
Dry Dry 0.3 99 916 97 223 0.1 94 213 223 MASHALL CREEK (\$51, 234) 0.3 42 10.1 94 213 0.3 42 11.1 94 206	18-64 50	6.3		9.2		467	7.9							6		• <u>• 01</u>			ABS = 0.0 $PO_{\Delta} = 0.85$	305			5	
0.3 99 97 235 2.2 0.3 51 10.5 94 217 2.6 0.3 51 10.5 94 217 2.6 0.3 71 11.1 94 208 2.3	23-64 30	Dry																	,					
0.3 59 9.6 97 235 2.3 0.3 0.5 51 10.5 94 217 2.6 MANSMALL CREEK (STA, 254) 0.5 51 10.5 94 217 2.6 11 0.3 47 11.1 94 208 2.3 1.3													_											
0.3 59 9.8 97 233 2.3 0.5 51 10.5 94 217 2.6 0.3 47 11.1 94 208 2.3												MA.	RSHALL CR	LEEK (ST	A. 254) I					_				
0.5 51 10.5 94 217 0.3 47 11.1 94 208	-10-63	£*0		9.8		235	7.3																	OWR
0.3 47 11.1 94 208	-7-63	0.5		10.5		217	7.6																	
	-10-63	0 3		11.1		208	7.3																	

b Laboratory pH.

c Sum of calcium and magnesium in epm.

Jamen exercise and with a second of the seco -

Derived from conductivity vs TDS curves Determined by addition of analyzed constituents.

Grovimetric determination.

_

32505-0-fl 6-61 200 SPO Amual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Stores Public Health, Service. Minanel analyses modely yunted Stores Geological Survey, Quality Mares Boogramment of Public Health, Service (USPHS); Jon Bernachan Cannty Fload Control District (SGECCD); Mentagoline Were District of Storema (WOD); Lass Angeles Operanemant of Public Health, Service (USPHS); Sin Bernachan Cannty Fload Public Health (BDPH; Stores Geological Storema); California Operatives District (SGECCD); Mentagoline Were District of Stores District Health, Exervice (USPHS); Sin Bernachan Cannty Fload Public Health (BDPH; Stores Geological of Storema California Operatives); Sin of Lass Angeles, Department of Public Health (LaDPH; City of Lang Beach, Department of Public Health (LaDPH; City of Lang Beach, Department of Public Health (LaDPH; City of Lang Beach, Department of Neuron); Sin of Lass Angeles, Department of Public Health (LaDPH; City of Lang Beach, Department of Public Health (LaDPH; City of Lang Beach, Department of Neuron); Sint of Lass Angeles, Department of Neuron); Sint of Lang Beach, Lang Public Health (LaDPH; City of Lang Beach, Department of Neuron); Sint of Lass Angeles, Department of Neuron); Sint of Lassing Laboratores, Inc. (TTL); A colutionia Department of Neuron); Sint of Laboratores, Inc. (TTL); A colutionia Department of Neuron); Sint of Laboratores, Inc. (TTL); A colutionia Department of Neuron); Sint of Laboratores, Inc. (TTL); A colutionia Department of Neuron); Sint of Laboratores, Inc. (TTL); A colutionia Department of Neuron); Sint of Laboratores, Inc. (TTL); A colutionia Department of Neuron); Sint of Laboratores, Inc. (TTL); A colutionia Department of Neuron); Sint of Laboratores, Inc. (TTL); A colutionia Department of Neuron); Sint of Sint o

ANALYSES OF SURFACE WATER CENTRAL COASTAL REGION (NO. 3)

	Hordnass bid-Coliform ^h Anolyzed os CoCO ₃ liy NPN/mi by i Totol N.C. ppm ppm		DWR						DWR						
	tiform ^h aPN/mi														
				1.5	1.7	1.5	0.5							4	2.5
-	Hordness es CoCO ₃ Totof N.C. PPm ppm														
				78	82	87	110					212	186	177	216
	de sod -														
Tote	solved solved in opm							_	390	245	270	310	285	275	325
	Other constituents			PO ₄ = 0,10	$PO_{4} = 0.13$	$PO_{4} = 0, 15$	$PO_4 = 0.20$					PO4 = 0.38	$\begin{array}{l} \text{Color} = 5\\ \text{P0}_{4} = 0.40 \end{array}$	$PO_{4} = 0,39$	PO ₄ = 0.45
	Boron Silico (B) (SiO ₂)														
an hilion	- 801.01 (B)							15)							
par a	Fiuo- rids (F)							STA. 2							
parts per millian equivalents per million	N:- trate (NO ₃)	(75		0.8 0.01	0.3	0*0	$\frac{1,8}{0,03}$	M@IA				0.9	1.2 0.02	$\frac{1.0}{0.02}$	0.00
e qui	Chio- rids (CI)	STA. 2		8.4 0.24	8.9 0.25	9.3 0.26	$\frac{12}{0,34}$	I OF OL				$\frac{18}{0*51}$	$\frac{16}{0_* 45}$	$\frac{16}{0_*45}$	18 0.51
Ē	Sul - fats (SO ₄)	CREEK (E NORTH							
stituente	Bicar- bonote (HCO ₃)	MARSHALL CREEK (STA, 254)		92 1.51	$\frac{104}{1_*70}$	$\frac{108}{1_*77}$		ONE MIL				$\frac{228}{3*74}$	$\frac{199}{3*26}$	<u>187</u> <u>3.06</u>	<u>239</u> 3.92
Minaral constituents	Carbon- ots (CO ₃)	W		0 <u>000</u>	0 <u>0</u> 00	0 <u>*00</u>		LOMPICO CREEK ONE MILE NORTH OF OLYMPIA (STA. 215)				0°.00	0,00	0*00	0 <u>000</u>
Mir	Polas- sum (K)							DIAMOT							
	Sodium (No)														
	Mogns- mum (Mg)			<u>1.56</u> c	<u>1,64</u> c	<u>1.74</u> c	2.20c					<u>4.24</u> c	<u>3,72</u> c	3.54c	4.32c
	Colcium (Ca)														
H	ale I		7.4	7 <u>*5</u>	7.7	7.7 8.0	7.7		8.2	8.0	7.8	7.9 8.3	$\frac{7,9}{8,1}$	$\frac{8.1}{7.8}$	8 <u>.3</u> 8.2
pacific	conductance (micromhos at 25°C)		219	215	224	237	304		606	383	418	481	977	428	506
	vad (n %Sat		98	66	98	76	76		96	92	76	98	-	105	105
	Dissolvs d oxygen ppm %Sat		12.2	11.8	11.4	10.8	9.8		9.8	10.2	12.0	12,6		12.2	11.6
	Temp in oF		64	97	87	51	59		58	52	41	41	45	87	52
	Dischorgs Temp in cfs in of		0.3	0.5	0.5	0.5	0.3		0, 3	1	1	0,3	0.5	0.8	0.5
	Dots and time P.S.T.		1-15-64 0910	3-25-64 1030	4-22-64 0910	5-13-64 0910	9-23-64 1317		10-8-63 1415	11-6-63 1145	12-11-63 1125	1-15-64 1230	2-20-64 1000	3-25-64 1400	4-22-64 1300

a Field pH

b Loborotary pH.

Jun of calcium and moderations in some ten (Fa), aluminum (A1), static (A3), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Ci⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown. c Sum of calcium and magnesium in epm.

Derived fram conductivity vs TDS curves.

Determined by addition of analyzed canstituents.

g Gravimetric determination

h Annual median and range, inspectivaly. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratours, or United Stores, Public Health, Service 1. Maneeria analyses made by United Stores, Calavia Vienes (USS): United Stores, Department of the Intron. Stores and the Stores California department of the Intron. Stores and the Stores Public Health, Service (USPHS): Sam Bernardiae County Flood Cannol District (SECFCD), Maneeria di Stores California (MID): Las Anglets, Department of Menton, Stores (USPR): United Stores Public Health, Service (USPHS): Sam Bernardiae County Flood Cannol District (SECFCD), Maneeria di Storem California (SHO): Las Anglets, Department of Menton, Stores (USPR): Limited Stores Public Health, Service (USPHS): Sam Bernardiae County Flood Public Health (LBDPH): Triminal Testing Laboratores, Inc. (TTL): a California Department of Menton, Stores (DSPHS): Can Bernardiae County Flood Public Health, LBDPH): Triminal Testing Laboratores, Inc. (TTL): a California Department of Menton, Stores (DSPHS): and Stores Public Health, Service (USPHS): Sam Bernardiae Public Health, LBDPH): Triminal Testing Laboratores, Inc. (TTL): a California Department of Menton, Stores (DSPHS): and Stores Department of Public Health, Service (USPHS): Sam Bernardiae Public Health, LBDPH): Trivical California Departmentia Verter Resources (DMR): as indicated Stores, Department of Public Health, Department of Health, Department, Department, Department, Department

045 002 T9-9 H-9-5052E

ANALYSES OF SURFACE WATER

CENTRAL COASTAL REGION (NO. 3)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		W	Mineral constituents in	1	activities and million		Total		Þ	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Specific			nhu			dis- per-	Hordness	Tur- College	Acctuación
0.13 54 10.9 101 317 $\frac{6.2}{6.1.2}$ $\frac{7.42}{7.42}$ c LLAPPETOD CREEK ONE MILLE NORTH OF OL 0.13 56 9.1 971 $\frac{6.2}{6.1.2}$ $\frac{7.42}{7.45}$ c $\frac{0.0}{0.00}$ $\frac{2.47}{2.15}$ $\frac{2.0}{0.00}$ $\frac{2.0}{0.05}$ $\frac{2.0}{0.05}$ 0.15 56 9.1 87 $\frac{9.2}{6.40}$ $\frac{9.2}{6.1.2}$ $\frac{7.2}{7.57c}$ $\frac{7.2}{0.0.00}$ $\frac{7.2}{2.1.55}$ $\frac{7.2}{0.0.00}$ $\frac{7.2}{0.00}$ $\frac{7.2}{0.00}$ $\frac{7.2}{0.0.00}$ $\frac{7.2}{0.00}$ $\frac{7.2}{0.00}$ $\frac{7.2}{0.00}$ $\frac{7.2}{0.0.00}$ $\frac{7.2}{0.0.00}$ $\frac{7.2}{0.00}$ 7	conductance pH Calcium (micromhas pH Calcium at 25°C) a (Ca)	Magne- sum (Ng)		Sul - fote (SO ₄)	Ni- trate (NO ₃)	(SiOg) Other constituents	solved sad- solids rum In ppm	Totol N C	normice and controrm anulyzed total N C nopm MPN/mi by i Total N C ppm	by i
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
		LONDI	CO CREEK ONE MIL	E NORTH OF OL	LYMPIA (STA. 215)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	517	<u>4.42</u> c		20 0.56		$PO_4 = 0.49$	330	221	1.6	DWR
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	614	5,39c		21 0.59		$PO_4 = 0.68$	395	270	1.1	
0.5 60 9.3 53 610 8.1 3.3 3.3 <td>646</td> <td></td> <td></td> <td>21 0.59</td> <td></td> <td>$ABS = 0.0$$PO_4 = 0.70$</td> <td>415</td> <td></td> <td>1.6</td> <td></td>	646			21 0.59		$ABS = 0.0$ $PO_4 = 0.70$	415		1.6	
2 56 10.0 95 270 1.2 2 32 10.0 95 270 1.2 2 32 10.0 95 270 1.2 2 32 10.0 95 270 1.2 1.5 45 11.8 97 260 1.2 2 43 11.3 99 236 9.0 1.78 2 43 12.3 99 236 9.0 1.73 2 43 12.3 99 236 1.2 1.28 1.23 2 43 12.1 103 235 7.3 2.736 0.0 11.9 1.23 1.23 2 49 11.3 98 2.36 1.26 0.0 1.12 0.33 3.33 2.3 51 11.0 98 2.36 0.0 1.16 0.34 0.34 2.3 51 11.0 98 2.36 <	649	<u>5,87</u> c		$\frac{22}{0,62}$		$PO_4 = 0.65$	415	294	1.3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		FALL	CREEK ONE-HALF N	ILE NORTH OF	FELTON (STA. 211)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	270						175			DWR
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	254						165			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	260						165			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	258	<u>2.28</u> c		7.8 0.22		$PO_4 = 0.09$	165	114		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	235	<u>2,02</u> c		8.5 0.24		$PO_4 = 0.07$	150	101	5	
2.5 51 11.0 98 2.4 8.4 2.5 51 11.0 98 2.28 0.00 2.33 8.4	256	<u>2,22</u> c		8.2 0.23		$PO_{4} = 0.14$	165	111	2.2	
	258	<u>2,28</u> c		8.4 0.24		PO4 = 0.11	165	114	6.0	
140 2.29 0.24	286	2.46c	$\frac{4}{0.13}$ $\frac{140}{2.29}$	8.4 0.24	5 0 <u>, 6</u>	$PO_{4} = 0.13$	185	123	0.4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	284			8.3 0.23		ABS = 0.0 $PO_{4} = 0.14$	183		0.3	

b Laboratary pH.

c Sum of calcium and magnessium in epm. d Inon (Fe), aluminum (AI), arsenic (A3), cooper (Cu), lead (Pb), manganase (Idn), zinc (Zn), and heravalent chramium (Cr^{1,4}), reported here as 0,00 0,000

Datemined by addition of analyzed constituents. Derived fram canductivity vs TDS curves

Gravimetric determination

32505-0H 0-01 200 JPD h Annual media and range, respectively. Colculated from analyses of digitance monthly samples made by Collidaria Department of Public Health, Division of Leboratoria, or United Stores Public Health Service Americal analyses and by United Stores Geological Survey. Quality of Mater Board, UUSC): United Stores Public Health, Service Control District, USERS, United Stores Public Health Service Control District (SBCFCD), Material Stores Cooling of Mater Board, USCS): United Stores Public Meant and Mater and Public Meant and Stores Public Health, Service Control District (SBCFCD), Material Stores Cooling of Mater Stores (USCS): United Stores and Material Stores and Material Stores Public Health, Service District (SBCFCD), Material Stores Control of Stores Public Meant and Stores Public Health, Service District distribution (Material Stores and Material Control Public Stores). Second District (SBCFCD), Material Stores Public Health, Service District distribution (Material Stores) and Stores and Material Material Stores and Material Stores and Material Stores and Material Stores and Material Material Stores and Material Stores and Material Material Material Stores and Material Material Stores and Material Stores and Material Material Stores and Material Stores and Material Stores and Material Stores and Material Material Stores and Atternative and Material Stores and Stores and Stores and Material Stores and Material Stores and

ANALYSES OF SURFACE WATER CENTRAL COASTAL RECION (NO. 3)

	ber]
	Hordnese bid - Caliform Analyzed ee CoCOs ity MPN/mi by I by I			OWR												
	diform MPN/mi															
Tur -	bid - C			0.2							12	14	7.5	4° 0	2.0	3.2
	Cocos	Total N.C. ppm ppm														
				128		129	114		138	141	136	133	136	141	143	
- - 	solved ead -	E		195		245	215	255	255	260	250	255	260	265	270	270
101				1	_	5	5	6	5	5	2	61	5	5	3	2
				PO4 = 0.13		Pe = 1.1 Mn = 0.00 $PO_4 = 1.5$	Fe = 0.21 Mn = 0.00 A8S = 0.0 $P0_4 = 2.4$	PO4 = 0.89	PO4 = 0.88	Color = 0 PO ₄ = 0.83	PO4 = 0.95	Fe = 1.2 PO4 = 1.1	PO4 = 1.0	PO4 = 0.70	$PO_{4} = 1.0$	ABS = 0.0 $PO_4 = 0.96$
	Boran Silico	(SiO ₂)	_													
an	Borar	6	111)		_											
ports per millian equivalents per million		(F)	 (STA.		(STA. 204)	1.1	10	Im		10		10	101	4	10	10
ports pi	ž	(SON)	NOLT24	0, 7 0, 01		2.5 0.04	2.0 0.03	2.1 0.03	2.6 0.04	$\frac{1,7}{0,03}$	2.6 0.04	2 • 0 0 • 03	$\frac{1,5}{0,02}$	2.2 0.04	2.1 0.03	2.0 0.03
* dui	Chlo-		TH OF	10 0.28	OF FELTON	26 0.73	<u>19</u> 0,56		$\frac{27}{0.76}$	24 0,68	23 0.65	26 0.73	$\frac{28}{0,79}$	$\frac{28}{0_*79}$	29 0.82	28 0,79
ŝ	Sul -	(S 04)	LLE NOF		EAST 0											
tituents	Bicor-	(HCO _S)	HALF M		E MILE	113	85 1.39		118	<u>120</u> <u>1.97</u>	$\frac{116}{1.90}$	$\frac{122}{2*00}$	$\frac{122}{2,00}$	<u>126</u> 2,06	<u>129</u> 2.11	
Mineral constituents		(CO ₅)	PALL CREEK ONE-HALF MILE NORTH OF FELTON (STA. 211)		BEAN CREEK ONE MILE EAST	0,00	0*00		0.00	0,00	0*00	0.00	0.00	0*00	0*00	
Miner		E(X)	ALL CRI		BEAN C											
		(D N)	P4			25 1,09	19 0.83							23 1,00		
		(0 M)		2.56c		2.58c	2.28c		2.76c	2.82c	2.72c	2.66c	2.72c	2.82c	2.86c	
		(Co)														
-	5 F	ي م		7.9		7.7	7.6	7.5	7.5 8.0	7.8 7.8	7 <u>*8</u>	7 <u>*8</u>	8.0 8.0	7.5	7.4 8.0	7.8
	conductonce pH (micromhoe pH	22°C)		303		380	334	390	393	399	386	392	397	409	413	417
-	n n n n n n n n n n n n n n n n n n n	Sot of		86		54		54	95		66	95	97	63	54	96
	Oissolved osygan	ppm %Sot		6*6		9*6	10.0	11.6	11.7		10.9	10.3	10.1	8,9	9.8	10.2
-	de la			59		5.8	53	44	44	48	52	53	57	64	57	55
	Discharge Temp in cfa in PF			2		2	a0	4	4	4	4	e	2.5	5	2.5	2.5
	Dote ond time			9-23-64 1340		10-8-63 1530	11-6-63 1030	12-11-63 1200	1-15-64 1130	2-20-64 1040	3-25-64 1340	4-22-64 1230	5-13-64 1245	6-23-64 1300	7-22-64 0920	8-18-64 0805

o Field pH

b Laboratory pH.

c Sum of colcium and magnesum in sum. d Inon (Fa), oluminum (AI), arsenic (As), coper (Cu), lead (Pb), monganese (Mn), zinc (Zn), and hexarolent chromium (Cr⁴⁵), reparted here as $\frac{0.0}{0.00}$ escept as shown.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Amuel median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Oppariment of Oublic Health, Division of Laboratories, or United Stores Public Health Service. Marrent loadyses and the second second seconds (1955); United Stores Department of In-Institute, Survey of Reclamation (USBR); United Stores Public Health, Service Control District (SBCFdD); Marrendo Stores Collorino (MAD); Les Angles, Department of Nate and Power (LADMP); City of Las Angles, Department of Public Health Early, Chy of Lang Baendo County Flood Public Medith (LBDPH); Harmood Testing, Laboratores, Inc. (17L); or California Department of Nate and Power (LADMP); City of Las Angles, Department of Public Health (LBDPH); Testing Baech, Department of Public Medith (LBDPH); Termind Testing, Laboratores, Inc. (17L); or California Department of Nate Resources (DMR); and California Department of Nate Resources, DMR); and California Department of Nate Resources, Data California Department of Nate Resources (DMR); as indicated.

045 002 T0-9 IHO-50570

ANALYSES OF SURFACE WATER

CENTRAL COASTAL REGION (NO. 3)

	Anolyzed			DWR		DWR		-								
	Hordnese bid - Coliform ^h Anolyzed															
ļ	1 24	n pộm		2,1							3,5	8,0	2.5	2.0	0.8	2.6
	CoCO	Totol N C PPm PPm		139		144	~		146		2	5			140	
	cent Ho sod - oe			13		14	107		14	138	127	142	144	141	14	
	dis- solved	spile mdd		265		240	185	235	245	235	220	240	245	240	230	235
								5	1	5	5	14		2	5	5
		Other constituents		PO4 = 1.1		Fe = 0, 16 Mn = 0, 00 $FO_4 = 0, 37$	$\begin{array}{rcl} Fe &= 0, 69 \\ Nn &= 0, 00 \\ ABS &= 0, 0 \\ PO_4 &= 0, 51 \end{array}$	$PO_4 = 0.29$	$PO_4 = 0.24$	$PO_4 = 0.23$	PO4 = 0.24	Fe = 0,89 $PO_4 = 0,26$	$PO_4 = 0,32$	$PO_{4} = 0.34$	$PO_{4} = 0.30$	ABS = 0,0 $PO_4 = 0,44$
uo	1 9	(B) (SiO ₂)														
ar million	-tuo-	(F)	204)		-											
ports per million sourcelents per million	- 12	trote (NO ₃)	(STA. 2	<u>3.2</u> 0.05	(STA. 229)	<u>1.2</u> 0.02	<u>1.8</u> 0.03	0.6 0.01	0.5 0.01	$\frac{1.0}{0.02}$	1.1 0.02	1.3 0.02	0.3	1.2 0.02	0.4	0.3
e aurvole	Chio-	(CI)	04) OF FELTON (STA. 204)	30 0.85		22 0,62	<u>16</u> 0.45		20 0,56	$\frac{18}{0,51}$	$\frac{17}{0,48}$	21 0,59	$\frac{22}{0,62}$	$\frac{22}{0,62}$	$\frac{21}{0,59}$	22 0,62
Ē	Sul -	fote (SO ₄)	EAST 0		R AT FI											
fituents	Bicor-	bonote (HCO _S)	AE MILE		I 4ZO RIVE	143 2.34	76 1.24		$\frac{137}{2.24}$	127 2.08	<u>115</u> 1.88	141 2,31	142 2.33	$\frac{143}{2,34}$	144 2.36	
Minerol constituents	or bon -	(CO3)	BEAN CREEK ONE MILE EAST		SAN LORENZO RIVER AT FELTON	0.00	0.00		0,00	0,00	0.00	00.00	0,00	0,00	0,00	
Mine	otos- 0	Envis	BEAN		-											
						22 0.96	16 0.70							21 0.91		
	Moone-	(Mg)		2.78c		<u>2,88</u> c	2,14c		<u>2.92</u> c	2 <u>,76</u> c	2.54c	2.84c	2,88c	<u>2,82</u> c	2,80c	
		(Co)														
	I	<u>a</u>		7.8		7 <u>*8</u> 7 <u>*7</u>	7 <u>*5</u> 7.6	7.4	7 <u>, 9</u>	7 <u>*5</u> 7 <u>*9</u>	7 <u>, 9</u>	7.7	$\frac{7,9}{7,9}$	8.0 8.3	7.3	8.0
	Specific conductance function	of 25°C)		408		390	295	375	391	378	349	387	394	383	380	376
	bev	%Sof		97		98	06	95	108	98	109	98	92	117	74	109
	Dissolved	mdd		9.7		9.8	9.7	12.0	13+7	11.3	12.3	10.7	10,1	10,5	7.3	9.7
	e Temp			60		60	54	42	42	67	50	53	52	70	61	71
	Dischorge Temp	5		5		80	35	30	25	30	35	20	18	15	18	18
		eompled P.S.T.		9-23-64 1455		10-8-63 1210	11-6-63 0945	12-11-63 1030	1-15-64 1050	2-19-64 1555	3-25-64 1230	4-22-64 1110	5-13-64 1045	6-23-64 1205	7-22-64 0800	8-17-64 1545

b Loborotory pH. o Field pH

Sum of calcium and magnession in epime. I can (Pi), a single (Pi), a single (As), capper (Cu), lead (Pb), manganese (Mn), z_{11C} (Zn), and herovolent chromium (Cr⁺⁵), reported here as $\frac{0.0}{0.00}$ except as shown. Sum of colcium and magnesium in epm. τ

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination

32505-UH 6-61 200 JRU Anoul median and maye, respectively. Calculated from analyses and suprese and by California Department of Public Health, Division of Laboratories, or United Stores Public Health, Service Minerel analyses made by United Stores Quality Marea Bayering (USSS). Junited Stores Dopartment of Public Health, Service Control District (BGCFCD), Manageria Caelogical Stores, Quality Marca, Stores Dopartment of Analysis, Caelogica Control District (BGCFCD), Manageria Caelogical Stores, Dopartment of Marca and Devis (LAMPH), City of Los Angeles, Dopartment of Public Health (LBDPH), Emmol Terring Lobastances, Inc. (TLL), the California District (BAMP), City of Los Angeles, Dopartment of Public Health (LBDPH), Emmol Terring Lobastances, Inc. (TLL), the California District (DAMP), City of Los Angeles, Dopartment of Analytic Health (LBDPH), Envis Lobastances, Inc. (TLL), the California District (BAMP), City of Los Angeles, Dopartment of Analytic Health (LBDPH), City of Long Beach, Department of Marca Resources (DMR); so indicated

WATER	3)
-	(NO.
SURFACE	REGION
0F	COASTAL
ANALYSES	CENTRAL (

	Detviou	by 1		OWR		OWR												
╞	nm ^h Ar	Ē	-															
	- Colifa	n pom MPN/ml		1.8							4		3.5	3.0	1.5	2.9	1.2	
-	Pid a	S D E		1.							4.4	33	°°	۳	1.	2 .	1.	
	Hordnei	os CoCO3 Tatol N.C. pom ppm		136		128	121		147	151	151	132	142	142	138		139	
	Per-	- poe						-										
Total	-	solids mod ni		240		245	220	265	260	265	265	245	260	260	255	265	240	
		Other constituents		$PO_{4_{4}} = 0.40$		$F^{e} = 0.32$ Mn = 0.00 $FO_{4} = 0.99$	Fe = 0.73 Mn = 0.00 ABS = 0.0 $Po_4 = 1.1$	PO ₄₄ = 0,71	$PO_{4_4} = 0.78$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$PO_{l_{4}} = 0.77$	Fe = 0.24 $PO_4 = 1.1$	$PO_4 = 0.88$	PO ₄ = 0.90	$PO_{4} = 0.93$	ABS = 0.0 $PO_4 = 0.94$	$PO_{4} = 1.0$	
un ittion		Baron Silica (B) (SiO _e)																
parts per million valents per million		Fiua- rida (F)	1						Im	fe:		(0)	ter	100		tel		
parts pe		NI- Trote (NO ₃)	(STA. 229)	0,7	1 TA. 233	1.8 0.03	2 • 3 0 • 04	$\frac{2,0}{0,03}$	$\frac{1.8}{0.03}$	$\frac{1_{*}3}{0_{*}02}$	2*2 0*04	$\frac{1.8}{0.03}$	1.0 0.02	1.6 0.03	$\frac{1.1}{0.02}$	1.5 0.02	2 <u>.3</u> 0,04	
equi		Chio- rida (CI)	FELTON	28 0.79	LTON (S	$\frac{24}{0,68}$	<u>18</u> 0.51		23 0.65	22 0.62	22 0,62	$\frac{22}{0,62}$	25 0,70	28 0.79	$\frac{27}{0_*76}$	30 0*85	29 0.82	
Ē		Sul - tate (SO ₄)	JER AT		C AT FE													
stituent		Bicar- banate (HCO ₅)	SAN LOPENZO RIVER AT FELTON		ZAYANTE CREEK AT FELTON (STA. 233)	$\frac{124}{2*03}$	$\frac{94}{1.54}$		$\frac{131}{2.15}$	$\frac{130}{2.13}$	$\frac{131}{2.15}$	$\frac{126}{2*06}$	$\frac{1.34}{2.20}$	136	132			
Mineral constituents in		Carban ate (CO ₃)	SAN LOP		ZAYAN	0*00	0.00		0.00	0,000	0,000	0,00	0*00	0*00	0,00			
Min	Γ	Potas- erum (K)	Γ															
		Sodium (N a)				25 1,09	20 0.87							$\frac{24}{1.04}$				
		Mogne- s.um (Mg)		2.720		2.560	2 <u>,42</u> c		2.94c	3.02c	<u>3.02</u> c	2.64c	2,840	2,84c	2.76c		2 * 78c	
		Calcium (Ca)	-															
	1	ato B		7.7		8 <u>*0</u> 7 <u>*7</u>	7 <u>,7</u> 7,7	7.8	8.3 8.0	<u>8.0</u> 7.9	$\frac{8,1}{7,8}$	$\frac{8_*1}{7_*7}$	$\frac{8_*1}{8_*1}$	7.8	7 <u>*7</u> 8.2	8.2	8.0	
	S0 CITIC Onductanc	(micramhos PH or 25°C) a		386		383	344	410	403	417	415	382	402	404	397	412	386	
	ved	gen (i		106		103	92	97	106	98	901	103	100	104	98	102	66	
	Dissolved	mqq		9.8		10.4	10.0	12.3	13.6	10,7	11.8	11.2	10.6	9.5	6*6	9.5	9.7	
	Temp	in of		67		59	53	42	41	53	51	53	55	68	59	99	62	
	Discharge	in cfa in oF		16		e	15	00	Ŷ	αĐ	œ	9	00	-	æ	00	00	
	_	and time sampled P.S.T.		9-23-64 1410		10-8-63 1230	11-6-63 0950	12-11-63 1045	1-15-64 1105	2-19-64 1605	3-25-64 1240	4-22-64 1135	5=13-64 1100	6~23-64 1210	7-22-64 0750	8-17-64 1530	9-23-64 1425	

o Field pH

b Labaratory pH

c Sum of calcium and magnesium in epm.

c sum at calcium and magnessium in equ. d Inor (Fa), of unmarm (Cr⁺⁵), respect (Su), lead (Pb), mongarese (Ma), zinc (Za), and hazaralent chromium (Cr⁺⁵), reported here as $\frac{0.0}{0.00}$ except as shown.

e Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

g Gravimetric determination.

h. Amount merica and range, respectively. Calculated from analyses of duplication monthly samples made by California Department of Public Health. Durison of Laboratories, or United Streps Public Health Service in Amount analyses mode by United Streps Consposed Streps (USCS). United Streps Patient Health Service and the Numer's Streps Public Health. Service Control Durison (USBR). United Streps Consposed Streps (USCS). United Streps Department of Health Service and Devel (USCS). United Streps Public Health Service (USPHS): 5an Bernadino County Flood Control Durison (USBR). United Streps Consposed Streps (USDR). Durison Service and Public Health. Service and Public Health. Service (USPHS): 5an Bernadino County Flood Control Durison (USBR). Internet Streps Consposed Collation (SMD); Las Angeles, Department of Meter and Public Health Service Distribution Streps Public Health. Service 1. Public Health (USPH); Firmed Testing Laboratores, Inc. (TTL), prodition Department of Meter Resources (DMR), as a miccoled

32505-D-H 6-01 200 JPD

ANALYSES OF SURFACE WATER

CENTRAL COASTAL REGION (NO. 3)

Γ		pezi											50					
		(lou A by			DWR								USGS					
		Hordmass bid - Coliform Analyzed es CoCOs nipm MPN/mi by 1 Totol Nr.											23. 1.3	62. 130.	6.2 23.	9.5 23.	6.2 6.2	6.2 23.
	Tur~	- pig							5.0	7.5	2.8			30	S	10	10	10
		Hordness ee CoCO ₅ Totol N.C. pom ppm							6	-			9 20	2 32	9 28	9 24	33	2 33
-									129	137	141		139	132	139	139	138	142
_	tol Pe	solved cent solide in ppm ium			240	215	220	236	220	235	240		25	25	14	27	26	23
-	7			-	2			1		2	2							
		Other constituents							PO, = 0.31	$PO_4 = 0.45$	$PO_4 = 0.39$							
	.	n Silico (SiO ₂)																
ion	per million	Boron (B)						_	_				0.0	0.1	0*0	0.1	0.1	0.1
ports per million	per	Fiuc- ride (F)	226)	_					3	-12	ulE	 TA. 75)						
porte p	aquivolents	Ni- trote (NO ₃)	ES (STA	-					1.1 0.02	0.3	0.6 0.01	EES (SI						
	nbe	Chio- ride (Ci)	IG TRE	_					$\frac{17}{0.48}$	$\frac{21}{0,59}$	$\frac{21}{0,59}$	BIG TR	24 0.68	20 0,56	$\frac{19}{0,54}$	26 0.73	19	22 0,62
	<u> </u>	Sul - fote (SO4)	ER AT B									VER AT						
	51170807	Bicor- bonote (HCO ₅)	NZO RIVI						$\frac{119}{1,95}$	$\tfrac{132}{2,16}$	<u>138</u> 2,26	ENZO RI	141 2,31	$\frac{122}{2,00}$	$\frac{135}{2,21}$	128 2.10	$\frac{114}{1,87}$	133
Martin and Alberta	IL CON	Corbon- ote (CO ₃)	SAN LORENZO RIVER AT BIG TREES (STA. 226)						0*00	0*00	0 0*00	SAN LORENZO RIVER AT BIG TREES (STA. 75)	$\frac{2}{0*07}$	0 <u>000</u>	0 <u>*00</u>	6 0,20	$\frac{7}{0.23}$	0,00
	WIN	Potos- (sum (K)	_ 3	-								-			-			
		Sodium (No)											21 0.91	20 0.87	10 0.44	24 1.04	22 0.96	20 0.87
		Mogne- S sum (Mg)							2.58c	2.74c	2.82c		2.78c	2.64c	2.,78c	2.78c	2.76c	2.84c
		Colcium A																
_		L olo			8.0	7.7	7.1	7.9	7.5 7.6	8.0	8.2 8.1		8.0 8.3	$\frac{7.1}{7.9}$	8.0 8.1	8.3 8.5	7.6 8.6	8.0 8.2
	Specific	(micromhos PH ot 25°C)			386	349	361	383	357	382	386		372	356	363	370	360	375
-		gen (n %Sot			67	85	16	110	103	103			16	66	108	116	103	105
		01450 019 019			9.7	9.4	11.8	13,3	11.2	10.4	10,1		8,8	10.4	12.9	13.2	11.6	11.2
		e ci			60	52	07	45	53	59			62	55	46	67	50	54
		0.echorge Temp in cfe in of			12	56	51	34	56	33	27		12	45	53	35	77	44
	_	eampled estime P.S.T			10-8-63 1430	11-7-63 1505	12-11-63 0910	1-15-64 1400	3-25-64 1515	4-22-64 1430	5-13-64 1515		10-3-63 1745	11-8-63 1230	12-4-63 1740	1-7-64 1240	2-6-64 1245	3-5-64 1330

ield pri.

b Loborotory pH.

c Sam of calcium and magnesium in epm. d Iran (Fe), oluminum (AI), arsenic (As), copper (Cu), lead (Pb), manganese (MA), sinc (Zn), and hexavalent chromium (Cr⁺⁴), reported here as ⁰/₀0 except as shown.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, ar United Stores Public Health Service

32505-0-H 0-01 200 320 Mareel onclyses made by United States Geological Survey. Quality of Wates Branch (USGS); United States Department of the Interior, Bureau of Reclomation (USBR); United States Department Victors, States and Provide States Department of Provide States Provide States Department of Provide States States Provide States States Department of Provide States States Department of Provide States States States States Department of Provide States Stat ANALYSES OF SURFACE WATER CENTRAL COASTAL REGION (NO. 3)

-	pez																	
	Analy by 1				USGS							DWR						
	Hardness bid - Caliform Analyzed				2.3	23. 13.	50. 13.	6.2 2.3	62. 62.	6.2 6.2								
Tur-	- piq -				2	1	-	10	4	~					13	15	3.5	3.4
	0.00s	pam pam			27	26	31	22	20	17								
				_	137	142	149	138	133	131		66	226	242	182	248	259	266
	tent - bent	_			27	25	26	26	27	25								
Totol	solved solids	100 U				239				230								
	Other constituents				00.00	$PO_{4} = 0.30$				Ae = 0.00 ABS = 0.0 Po ₄ = 0.50		ABS = 0.0 $PO_4 = 1.1$	PO ₄ = 0,48'	ABS = 0.0 $PO_4 = 0.39$	PO ₆ = 0.68	$PO_{4_{4}} = 0.67$	PO ₄ = 0.78	PO4 = 0.79
	Silica	(anic)				24				22								
lion	Baron	6			0.1	0.1	0.1	0.1	0.1	0.1		0.1						
er mil	Fluo-		10/	(()		0.2 0.01					209)							
garts per million aquivalents per million	Ni-	(⁶ 0N)	v	' VTC) C		$\frac{1_{*}2}{0_{*}02}$				0.9	Z (STA.	$\frac{13}{0_*21}$	$\frac{1.9}{0.03}$	$\frac{0,6}{0,01}$	3.0 0.05	$\frac{1_*7}{0_*03}$.	<u>2.0</u> 0.03	<u>1.0</u> 0.02
aquivo	Chia-	(CI)		- TREE	$\frac{20}{0.56}$	23 0,66	$\frac{24}{0,68}$	$\frac{25}{0_*71}$	$\frac{23}{0,65}$	24 0.68	NTA CRU	25 0.70	<u>31</u> 0.87	$\frac{32}{0,90}$	$\frac{28}{0_*79}$	<u>35</u> 0.99	$\frac{36}{1,02}$	<u>37</u> 1.04
Ē	Sul -			TEK AT E		46 0.96				$\frac{34}{0,71}$	NEAR S/							
stituent	Bicar-	(HCO ₃)		CEL TOKENSO KIVEK AI BIG IKEES (SIA. 1	$\frac{132}{2.16}$	$\frac{141}{2.31}$	$\frac{134}{2,20}$	$\frac{142}{2,33}$	$\frac{138}{2,26}$	<u>139</u> <u>2.28</u>	E CREEK	56 0.92	228 3.74	$\frac{2.52}{4_{*}13}$	$\frac{179}{2.93}$	$\frac{263}{4.31}$	284	$\frac{276}{4+52}$
Minerol constituents	Corbon-	(CO _S)		SAN LUK	$\frac{1}{0,03}$	0*00	$\frac{5}{0_*17}$	0,000	0*00	0*00	BRANCIFORTE CREEK NEAR SANTA CRUZ (STA. 209)	0 0*00	00*0	$\frac{0}{0,00}$	0*00	$\frac{0}{0,00}$	0*00	8 0,27
Min	Patas-	(K)				$\frac{1,8}{0,00}$				$\frac{2.0}{0.05}$	BR.							
	Sodium	(0.4)			$\frac{23}{1,00}$	22 0,96	$\frac{24}{1_*04}$	$\frac{22}{0,96}$	$\frac{22}{0,96}$	$\frac{21}{0,91}$		18 0,78	$\frac{33}{1,44}$				$\frac{41}{1,78}$	
	Magne-	(M9)			2.74c	$\frac{9*0}{0*74}$	2 <u>,98</u> c	2.76c	2,66c	$\frac{14}{1.12}$		<u>1,98</u> c	4.52c	4 <u>84</u> c	3.640	<u>4.96</u> c	<u>5,17</u> c	<u>5,31</u> c
	Colcium	(0)				$\frac{42}{2.10}$				$\frac{30}{1.50}$								
	I, C	-1-0			8.0 8.3	7.8	8.0 8.5	8.2 8.2	8.1 8.1	8.0 8.0		7.2 7.1	$\frac{7,9}{8,1}$	$\frac{8,2}{8,2}$	8.3	8.2	7 <u>*6</u> 8 <u>*3</u>	7+6 8+5
Cacific	conductance (micromhas at 250 C)				373	379	389	372	358	366		351	583	614	693	641	699	678
	p c	%Sat		_	112	102	102	119	118	112		96	06	109		107	87	114
	Diesoly	00 m 00	_		11.0	11.2	10,1	10.5	10.1	10.7		10.3	12.0	14.2		11.0	8.9	10.8
	r oF	-			61	52	60	70	73	63		54	38	40	55	58	58	65
	Discharge Temp Disectved in cfs im ^{OF} osygen				40	30	31	17	11	13		8	m	1.5	Ś	1.5	1	0.5
	Date and time sompled	P.S.T.			4-7-64 1215	5-6-64 0920	6-10-64 1215	7-8-64 1120	8-6-64 1140	9-3-64 1055		11-6-63 0735	12-13-63 0845	1-16-64 1040	3-26-64 1500	5-14-64 1430	6-23-64 0730	7-22-64 1230

a Field pH

b Laboratory pH.

c Sam of calcium and magnessum in epm. d Iran (Fa), alumnum (AI), arsenic (As), capper (Cu), lead (Pb), manganese (Ikn), zinc (Zn), and hexavalent chromium (Cr⁺⁴), reported here as 0.00 except as shown.

Derived from conductivity vs TDS curves .

Determined by addition of analyzed constituents.

g Gravimetric determination.

h Annual mation and roops, respectivaly. Calculated from analysas of depictance monthy samples made by California Deportment of Public Health, Division of Laboratories, or United Stores Daplier Health Service.

 Marreel analyses made by United Stores Conlogical Survey, Quality of Stores Department of the Internet, Survey and Stores Pooling Mathematical Stores Conlogical Stores, Quality of Stores Daplier Health, Service.
 Marreel analyses made by United Stores Conlogical Survey, Quality of Water Bondo, UUSS1, United Stores Stores Ostanova of Reclamation (USBR), United Stores Pooling Mathematical Stores, Quality of Stores Daplier Health, EuroPhy. J. S. Bernadriso County Flood Control Stores, Ostanova of Reclamatical Stores, Consoling of USPR), J. S. Bernadriso County Flood Control Stores, Ostanova of Reclamatical Stores, Department of Water and Power (ADPP), City of Las Apples, Department of Mater and Power (ADPP), City of Las Apples, Department of Mater and Power (ADPP), City of Las Apples, Department of Mater and Power (ADPP), City of Las Apples, Department of Mater and Power (ADPP), City of Las Apples, Department of Mater and Power (ADPP), City of Las Apples, Department of Mater and Power (ADPP), City of Las Apples, Department of Mater and Power (ADPP), City of Las Apples, Department of Mater and Power (ADPP), City of Las Apples, Department of Mater and Power (ADPP), City of Las Apples, Department of Mater and Power (ADPP), City of Las Apples, Department of Mater and Power (ADPP), City of Las Apples, Department of Mater and Power (ADPP), City of Las Apples, Department of Mater and Power (ADPP), City of Las Apples, Department of Mater and Power (ADPP), City of Las Apples, Department of Mater and Power (ADPP), City of Las Apples, Department of Mater and Power (ADPP), City of City and Las Apples, Department of Mater and Power (ADPP), City of Las Apples, Department of Mater and Power (ADPP), City of City and Las Apples, Department of Mater and Power (ADPP), City of City and Apples, De

32305-0-8 6-61 200 300

ANALYSES OF SURFACE WATER

CENTRAL COASTAL REGION (NO. 3)

	Anolyzed by [§]			DWR			DWR					_					
	¥ 4	_		Md			MO										_
	bid - Coliform ^h ity MPN/mi																
Tur -	- piq			2.4	2.1							13	4.5	5.0	3.0	3.3	
	Hordnass b es CoCO ₃ In	Fotol N C BPm BPm			~												
	Ĩ.				278		198	116		175	146	143	178	193	212	212	
	Cent Cent	E					0		0				10				
Tot.	solved solide	<u>.</u>					380	250	250	340	290	290	345	370	400	405	
	Other constitutents	- F		ABS = 0.0 PO4 = 0.80	P04 = 0.93		Fe = 0.50 $FO_4 = 0.71$	Fe = 0.88 A8S = 0.0 P04 = 0.90	$PO_{4} = 0.44$	ABS = 0.0 $PO_4 = 0.34$	Color = 5 PO ₄ = 0.45	$PO_{4} = 0.54$	PO ₄ = 0.50	$PO_4 = 0.42$	PO ₄ = 0.67	$PO_4 = 0.68$	
6	Boron Silico	(2:0 ²)						0.1		4.12	0 4				щ		
million	Flue- Bo	í.	(60					01									
gorts per million squivolents psr million	N1- F1		 (STA. 20	0.6 0.01	3.0 0.05	-	1.2 0.02	5 • 5 0 • 09	5.8 0.09	1.9 0.03	3.4	4 <u>.9</u> 0.08	<u>1.5</u> 0.02	<u>1.5</u> 0.02	1.1 0.02	1.4 0.02	
part quivolet	Chio-	-	A CRUZ	36	39 1.10 0	1 5TA. 248)	32 1 0.90 0	25 5 0*70 0		28 0,79 0	25 3 0,70 0	26 0.73	29 1 0.82 0	35 0.99	34 1 0,96 0	34 1 0.96 0	_
Ē	Sul - C		I IR SANTI	1		REEK (S		0		0.5	0.2	0.2	0.2	10	10		
	Bicor - Si	1	BRANCIFORTE CREEK NEAR SANTA CRUZ (STA. 209)			RANCIFORTE CREEK (STA.	213 3.49	89 1.46		174	138 2,26	129	<u>180</u> 2.95	<u>200</u> 3,28	225 3.69	3,75	
Minsral constituents	Corbon - Bi		I PORTE C			BRANC	0.00	0.00		0,00	0.00	0,00	0.00 2	0.00 3	0.00	0,00	
Minsro	Potos- Co) ()	BRANC				-10	10		- jo	10	0	o		0]0	
	Sodium Po						40 1,74	22 0.96							18 0.78		
	Mogns- S				5 <u>, 55</u> c		3,96c	2.32c		3 <u>, 50</u> c	2.92c	2.86c	<u>3. 56c</u>	3.86c	4.24c	4.24c	
		(Co)										1.4			14		_
-	Ŧ	ماه		8.4	8.0		8.2 8.0	7.4	7.2	8.1 8.1	8.0 7.9	8.0 7.6	8.4 8.1	8.1 8.3	7 <u>*8</u> 8 <u>*</u> 2	7 <u>*9</u> 8 <u>*</u> 3	
Castille	conductance (micromhos	10-02 10		677	702		547	356	356	486	417	416	497	526	572	580	
	p su	% Sof		120	93		109	86	86	103		99	105	110	85	116	-
	Dissolvs d oxygen	maa		11.4	9.3		10.5	9°3	10.9	13.4		11.11	11.3	11.0	8.7	10.7	
	Temp in oF	-		65	60		63	54	42	40	54	56	54	60	58	67	
	Dischorge Tamp in cfs in ^{oF}			0.8	0,8		1.4	15	5.6	3.2	4.2	7.7	3.2	2.4	1.4	0.8	
	Dots ond time	P.S.T.		8-17-64 1405	9-23-64 1010		10-7-63 1330	11-6-63 0735	12-10-63 0800	1-16-64 0950	2-20-64 1400	3-26-64 1430	4~23-64 1515	5-14-64 1410	6-23-64 0700	7=22=64 1215	

o Freid pH

· Laboratory pH

Sum of colcium and magnesium in epm.

Sum of colorium and magnetismin in spin. I can (R), instance (S4), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and heavalent chromium (Cr⁺⁶), reported here as $\frac{0.0}{0.00}$ escept as shown.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents

Grovimetric determination.

Anual med an oud ange, respectively. Calculated from analyses all duplicate monthly samples made by California Department of Public Health, Drivision of Laboratories, or United Stores Public Health Service. Mixed analyses stade by United Stores, Couldry Meres Boardingers Department of Public Media Stores, Public Health Service, Son Benoding County Flood Control District (SECC), Mennation Water District et Sustime California (MD): Los Angeles Department of Manet on Drave of Reclamation (USBR); United Stores, Public Health Service, Department of Public Health (LDBP); Example Terring Laboratoria et Sustime California (MD): Los Angeles, Department of Manet and Power (LADMP); City al Los Angeles, Department of Public Health (LDBP); Emmol Terring Laboratoria, Marc California Deartment Meret Resources (DMR): as indicated

32505-648 6-61 200 uPU

ANALYSES OF SURFACE WATER CENTRAL COASTAL REGION (NO. 3)

	pe														
	Analy by		DWR			DWR									
	dPN/mi														
Tur~	Hordness bid - Coliform ⁿ Anolyzed es CoCO ₃ ¹ MPN/mi by i Totol N.C. ppm opm		6.1	4.0					4.0	3.5	2.3	1.5	3.6		
	Hardness es CoCO ₃ Total N.C. ppm opm														
	Toto PPm			255			100		16	54	88		98		
	Cant Cant Cant Cant			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~											
Tote	solved solved n ppm		425	465											
	Other constituents		ABS = 0,0 $PO_4 = 0,74$	PO4 = 0.89			Color = 10 $PO_4 = 0.42$		$PO_4 = 0.46$	$PO_4 = 0.52$	PO4 = 0,52	ABS = 0.0 $PO_4 = 0.56$	PO ₄ = 0,64		
	Boron Silico (B) (SiO ₂)														
on Illion	Boron (B)														
r millic	Fluo- ride (F)														
ports per mittion	Ni- trate (NO ₃)	248)	0.4	2.1 0.03	(15		4.4 0.07		$\frac{2.0}{0.03}$	2.0 0.03	$\frac{1.2}{0.02}$	0.9	$\frac{1.4}{0.02}$		
ports per million aquivolents per million	Chio- ride (CI)	(STA.	$\frac{37}{1.04}$	$\frac{39}{1,10}$	(STA. 2		$\frac{22}{0+62}$		23 0,65	26 0.73	28 0.79	$\frac{31}{0,87}$	$\frac{38}{1,07}$		
	Sul - fots (SO ₄)	E CREEK			CREEK										
tituents	Bicor - bonots (HCO ₃)	BRANCIFORTE CREEK (STA. 248)			GARBONERA CREEK (STA. 251)		78 1.28		$\frac{86}{1*41}$	87 1,42	$\frac{89}{1.46}$			-	
Minsrol constituents in	Potos- Corbon- sum (K) (CO ₃)	BRA			CG		0*00		0 <u>*00</u>	0,00	0*00				
Mins	otos- C sum (K)														
	Sodium P (No)							-		$\frac{24}{1.04}$		_			
	Mogna-Sc sum ((Mg)			5, 09c			2,00c		1,82 c	1,88c	1.76c		1,96c		
	Ę()										-				
\vdash	40 H		8.4	7.9		7.3	7.3 7.6		7.9	7 <u>*2</u>	7 <u>*4</u>	7.2	7.3		
e.eie	P Dissolva d conductonce PH Colc p osygan (micromhos PH Colc ppm 96.Sat at 25°C) 5 (C		611	668		312	315	320	314	32.5	330	350	383		
	a cond Sof at		113	92		103			101	88	901	102	78		
	Dissolved osygen ppm %Sof		10.6 11	9.1		13.4 10			10,0 10	3 0*6	9.9 10	9.4 10	7.8		
-	OF D		66 10	61		40 13	53		61 10	58	99	67	60		
-	Dischorgs Tamp in cfs in oF		1.2	6*0		2	5	2.5	0,8	0.5	0.3	0.3	0.3		
	Dote Dia ond time Dia acmpted		8-17-64 1350	9-24-64 0945		1-16-64 1020	2-20-64 1345	3-26-64 1500	5-14-64 1455	6-23-64 0750	7-22-64 1220	8-17-64 1350	9=23=64 1000		

o Field pH

32505-0-H 6-61 200 -PO

b Laboratory pH.

c Sum of colcium and mognasium in epm.

from (F-a), aluminum (A1), attents (A3), capper (Ca), lead (Pb), manganese (Jah), zine (Za), and heavelent chromium (Cr⁴⁵), reported here as $\frac{0.0}{0.00}$ except as shown. Derived from conductivity vs TDS curves

Determined by addition of onolyzed constituents.

h. Amust median and maya, respectively. Colculated from analyses of displicate monthy samples made by Collifornio Department of Public Health, Davision of Loboratories, or United Stores, Public Health Service.
i. Marcell analyses made by United Stores, Cavelysed and service (USSS): United Stores, Public Health Service.
Cannol District (SSCFCD), Marcellanded from analyses of displication contents. On Stores Cavelysed Stores, Cavelysed Stores, Oceaning of Marcel Stores, Oceaning of Marcellanded Stores, Davis Marcellanded, Stores, Davis Marcellanded, Compris, Flood
Posis Indiand, R.DePhi, Francellande, Marcellanded Marcellanded Marcen, Sucrato of Reclamation (USBR), University Stores, Davis Marcellanded, Compris Marcellanded, Davis Marcellanded, Davis Marcellanded, Stores, Davis Marcellanded, Stores, Davis Marcellanded, Stores, Davis Marcellanded, Davis Marcellanded, Davis Marcellanded, Davis Marcellanded, Stores, Davis Marcellanded

CENTRAL COASTAL REGION (NO. 3)

	olyzed '			_	uscs												
-	Hordness bid - Caliform Anolyzed es CoCO3 119 MPN/mi by i				62. US 62.	23.	6.2 2.3	6.2 13.	13. 2.3	2.3 21.	62 . 23 .	62. 23.	6.2 50.	62. 5.	13. 23.	13. 23.	
	MPN Colife	_															
	piq c	ωE			88 2	104 10	96 2	82 5	85 10	98 10	85 1	89 1	87 0	96 2	63 3	91 2	
	ordnesi CoCO	Potol N.C.		_	298 8	288 10	290 9	288	262 8	293 5	280 8	294 8	283 8	304	296	298	
	cent H							10 2	25 2	24 2	27 2	27 2	32	27 3	25 2	24 2	
	aolved eo	ι.			27	27	26		2	3		502 2		3		488 2	
- ¹																4	 _
	Other constituents										00 0	$PO_4 = 0.24$				A8 = 0.00 A8S = 0.0 PO4 = 0.35	
	Silica	SiO										<u>ଛ</u>					
ion	1 8	(8)			0.0	0.1	0.1	0.1	0.2	0.2	0.1	0.1	0.1	0,1	0,1	0.2	
million er mit	Flua-	(L)										0.4					
parts per million valents per mit	1 1 N	(NO _S)	16)									0.6				0.5 0.01	_
parts per million equivalents per million	Chio-	(CI)			65 1.83	<u>55</u> 1.55	42 1.18	58 1.64	36 1.02	48 1,35	48 1.35	58 1.64	62 1.75	67 1,89	58 1.64	62 1.75	
č	Sul -	(SO ₄)	*T 5001	nhore TW								<u>115</u> 2.39				<u>101</u> 2.10	
tstuente	Bicar-	(HCO _S)		- LAGEN	<u>236</u> <u>3,87</u>	<u>225</u> 3.69	$\frac{220}{3.61}$	<u>217</u> 3.56	<u>182</u> 2.98	<u>216</u> <u>3.54</u>	$\frac{214}{3,51}$	<u>242</u> <u>3,97</u>	$\frac{217}{3*56}$	<u>226</u> <u>3.70</u>	<u>240</u> <u>3.93</u>	252 4.13	_
Mineral constituents		(CO ₃)	A11003	TUDUC	10 0,33	0,00	8 0,27	17 0.57	17 0.57	11 0.37	12 0.40	4 0.13	11 0.37	$\frac{14}{0.47}$	4 0,13	0*00	
Mine		(X)										$\frac{3.9}{0.10}$				$\frac{4_*7}{0_*12}$	
	Sodium				50 2+18	49 2.13	46 2.00	15 0.65	41 1,78	4 <u>3</u> 1.87	48 2+09	<u>52</u> 2.26	60 2.61	$\frac{51}{2 \cdot 22}$	45 1.96	444 1,91	
		(6M)			5.96c	5.76c	5,80c	5.76c	5.24c	5 <u>*86</u> c	5, 60c	$\frac{23}{1.89}$	5,660	6,08c	5.92c	$\frac{27}{2 \cdot 22}$	
		(co)										80 <u>3.99</u>				75 3.74	
	H	a.Lo		-	$\frac{8.1}{8.4}$	7 <u>,6</u> 8 <u>,2</u>	8.2 8.3	8.4 8.7	8 <u>.3</u> 8.6	8.4 8.6	$\frac{8_{*}4}{8_{*}7}$	8.0 8.4	8.4 8.6	8.4 8.6	8.4 8.3	8.2 8.1	
	conductance (micromhos	12200			787	750	716	778	650	717	720	774	768	780	746	755	
F.	be the second	%Sot 0			16	105	96	111	105	103	79	105	107	141	159	112	
	Discolved osygen	ppm 9			8.4	10.9	10.9	12.0	11.0	10.6	7.6	11.6	10,3	11.8	13.3	10.9	
	Temp in oF				68	57	50	54	56	58	79	52	64	77	77	63	
	Dischorge Temp In cfs in of				4.5	8,0	13	0°6	19	13	11	5.2	1.2	1.7	1.7	2.4	
	Dote Dote D	P.S.T.			10-3-63 1700	11-8-63 1122	12-4-63 1700	1-7-64 1330	2-6-64 1430	3-5-64 1515	4-7-64 1310	5-6-64 0800	6-10-64 1310	7-8-64 1220	8-6-64 1230	9-3-64 0955	

a Field pH

b Labaratary pH.

Sum of colcium and magnetsium in spim. Iron (Fe_j , ordunatum (A_1), science (A_2), clooper (Cu), lead (Pb), manganese (An), zinc (Zn), and hazaralent chromium (G^{+6}), reported here as $\frac{0.0}{0.00}$ except as shown. Sum af calcium and magnesium in epm.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimatric determination.

045 002 T9-9 IP-0-5052E h. Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by Callishmia Department of Public Health, Devision of Laboratorias, or United Stores Fuglic Health Service i. Mineral markes made by United States Geological Survey, Cauling Markes Manuel (SUS): United States Department of the Interior, Survey of Reclamation (USBR); United States Public Health Service Control Devicit (SECFCD); Menaculation was Device Control (SUS); United States Department of the Interior, Survey of Reclamation (USBR); United States Public Health Service Beach, Department Service Control Devicit (SECFCD); Menaculation was practiced from (SUS); United States Department of Walter and Public Health, Service Beach, Department of Public Health (LDPH); Firmed Leaboratoria, Inc. (TLL), an Outerian Department Mark Resources (DMR); as indicated

	6.1
	-
	×
	(NO
	5
•	2
	6
	REGIO
· ·	PG 1
	COASTAI
	8
	3
· ·	~
	2
	0
	-
	2
	-
	5
	CENTRAL
	6.2
	-

Pez

	A nolyze by İ		DWR												
	Hordness bid - Coliform ^h Anolyze es CoCO ₃ 11, MPN/mi by 1 Total N.C noôm ppm														
1	- 210 - 100 - 100							3.4	2.6	2.3	1.5	0.9	0.7	2.0	
	dnese CoCO _S Ppm														
			141	117		145	142	134	142	142	143	140		135	
	tent ium ium														
Tote	dis- solved solved in ppm		240	205	235	240	235	225	240	240	240	240	235	240	
	Other constituents		Fe = 0.40 Po4 = 0.53	ABS = $0_{*}0$ PO ₄ = $0_{*}70$	$P0_4 = 0.41$	PO ₄ = 0.28	$Color = 0$ $P0_4 = 0.32$	PO ₄ = 0,32	PO ₄ = 0,37	$PO_{4} = 0.41$	$PO_{4} = 0.41$	PO4 = 0.46	ABS = 0.0 $PO_{4} = 0.59$	PO ₄ = 0.50	
	Silic o (SiO ₂)														
n li	Boron (B)						_								
r million per million	Fluc- ride (F)	230)													
ports per million equivalents per mil	Ni- trote (NO ₃)	Z (STA	0.9 0.01	$\frac{1.2}{0.02}$	0,01	0.4	1.5 0.02	0.8 0.01	0.1 0.00	0.00	0.9	$\frac{1.2}{0.02}$	0.00	0.6 0.01	
d vine	Chio- ride (Ci)	NTA CRU	$\frac{22}{0,62}$	19		$\frac{22}{0*62}$	$\frac{19}{0.54}$	18 0.51	22 0.62	$\frac{22}{0.62}$	$\frac{23}{0,65}$	24 0.68	$\frac{23}{0,65}$	$\frac{51}{1.44}$	
Ē	Sul - fote (SO4)	AT SA													
stituents	Bicor- bonote (HCO ₅)	ZO RIVE	141 2.31	<u>112</u> 1.84		<u>134</u> 2.20	$\frac{132}{2*16}$	<u>125</u> 2.05	1 <u>38</u> 2.26	$\frac{141}{2_{*}31}$	$\frac{144}{2,36}$	143 2.34			
Minerol constituents	Corbon- 010 (CO3)	AN LORENZO RIVER AT SANTA CRUZ (STA, 230)	00*0	0*00		0,00	0*00	0,00	0,00	0*00	$\frac{0}{0*00}$	0.00			
Mine	Potos- sum (K)	- 8 -													
	Sodium (No)		23 1.00	19 0.83							$\frac{21}{0,91}$				
	Mogne- mus (Mg)		2.82c	2.34c		2.90c	2.84c	<u>2.68</u> c	2,84c	2,84c	2.86c	2.80c		<u>2.70</u> c	
	Colcium (Co)														
	ماہ <u>۲</u>		<u>8.3</u> 7.9	7.4	7.7	$\frac{7_*7}{8_*0}$	$\frac{7_{*}9}{8_{*}1}$	8.4 8.0	<u>6.4</u> 8.3	8.4	$\frac{7_{*}5}{8_{*}2}$	$\frac{7_{\star}6}{8_{\star}2}$	8.4	7.6	
	specific conductonce (mic.romhos of 25°C) a of 25°C		388	331	380	390	382	364	389	389	387	386	380	389	
	gen (j		115	16	96	96	124	124	122		98	115	133	82	
	Oleso 04y 04y		11,3	9*6	12.5	12.7	13.2	12.6	12.2	10.6	9.1	6*6	11.2	8.2	
	Temp		62	56	40	39	55	59	60		67	74	76	60	
	Dischorge Temp in cfe in oF		15	150	50	35	50	50	30	25	20	27	25	25	
	Dote and time eampled P.S.T.		10-10-63 1600	11-5-63 1625	12-11-63 0840	1-16-64 0900	2-20-64 1430	3-26-64 1400	4-23-64 1430	5-14-64 1340	6-23-64 0920	7-22-64 1200	8=17-64 1445	9-24-64 0800	

b Loborotory pH. o Field pH.

e Sum of colcium ond mognesum in apm. d Iron (Fe), oluminum (AI), arsenic (As), cosper (Cu), lead (Pb), manganese (Ma), zinc (Zn), and heravalent chramium (C⁺¹^s), reported here as <u>00</u> except as shown.

e Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

^{202 19-9} H-0-50521 h. Amoul region and rows, researched y Catalogned from analyses of dual tareform and by Catilonnia Department of Public Health, Division of Laboratories, or United Steves, Public Health, Service, 1. Amoual analyses and a by United Steves, Geological Server, Database Department of Health, Division of Laboratories, or United Steves, Pablic Health, Service, Cannol District (SBCFCD), Manadolina Water of Review of Real analysis (SBCFD), analysis of Public Health, Service (USPRS), Sin Bernodrino County Flood Database Department of Mental Steves, Deality of Water Bernodrice and Neuroin District (SBCFCD), Manadolina Menter of Severatories (USPRS), Sin Bernodrino County Flood Public Health, LUDPH), Familor Testing, Laboratoria, Indiana Disparament of Neuroin County Flood Public Health, LUDPH), Familor Testing, Laboratoria, Menter Resources (DNR), os indicated, LUDPP), City of Las Anglina, Dapatine Health, LEDPH); Eanol Testing, Laboratoria, Menter Resources (DNR), os indicated, Database Health, LUDPH); Familor Testing, Laboratoria Menter Resources (DNR), os indicated, Loudon (Laboratoria, Recondition County Flood Public Health, LUDPH); Familor Testing, Laboratoria, Prosiment of Menter Resources (DNR), os indicated, Loudon (Laboratoria, Recondition County Flood Public Health, LUDPH); Familor Testing, Laboratoria, Prosiment of Menter Resources (DNR), os indicated, Loudon (Laboratoria, Recondition County Leaboratoria, Recondition County

ANALYSES OF SURFACE WATER

CENTRAL COASTAL REGION (NO. 3)

	p	-	 			_										 ٦
	Analyzed by I			USGS												
	bid - Coliform ⁿ ity MPN/mi			6.2 6.2	230. 62.	6.2 6.2	6.2 2.3	2.3 6.2	6.2 23.	6.2 2.3	2.3	23 . 62.	230.	62. 50.	6.2 62.	
Tur-	- piq -			5	4-	10	é	6	10		2	٦	10	\$	4	
	0	u E z B		43	67	291	310	189	239	265	212	150	120	62	68	
	Haro 0 88	Ppm ppm		496	482	598	554	442	560	562	574	498	540	488	530	
	Cent Bod	-	 	64	33	30	22	27	24	25	24	35	35	40	39	 _
Totol	solved solids	100 W									933				959	
	Other constituents					As = 0,01				00 0	$PO_4 = 0.20$			10 01	$PO_4 = 0.50$	
	Silico	(2nic)	 								81		-		6.6	
Lon	Baron			<u>1,0</u>	0.6	0.7	0.4	0.4	0.6	0.5	0*6	0.8	0.6	0.8	0.8	
million ber mil	Fluo-		 2								0.03					
squivalents per million	Ni -	(N03)	 (STA, 77)								$\frac{19}{0,31}$				0.9	
aquivo	Chio-	(CI)	TENDEN	<u>189</u> 5,33	$\frac{111}{3,13}$	$\frac{115}{3*24}$	$\frac{72}{2*03}$	63 1,78	$\frac{76}{2 \cdot 14}$	77 2.17	95 2.68	$\frac{110}{3.10}$	<u>110</u> <u>3.10</u>	125 3+53	<u>135</u> 3,81	
Ē	Sul -	(SO4)	AR CHLT								<u>262</u> 5,45				$\frac{188}{3*91}$	
constituents	Bicor -	(HC03)	IVER NE	544 8,92	462	$\frac{374}{6,13}$	290	<u>260</u> 4.26	376 6,16	<u>342</u> 5.61	430	<u>388</u> 6, 36	<u>472</u> 7.74	500 8.20	556 9,11	
Minarol con	Corbon-		PAJARO RIVER NEAR CHITTENDEN 	$\frac{4}{0,13}$	4 0.13	0*00	4 0,13	$\frac{24}{0,80}$	$\frac{8}{0_{*}27}$	$\frac{10}{0,33}$	6 0,20	<u>18</u> 0.60	$\frac{20}{0.67}$	$\frac{10}{0,33}$	4 0,13	
Min	Potos-	(K)									$\frac{2.4}{0.06}$				5.0	
	F	(0 N)		$\frac{170}{7,40}$	$\frac{111}{4*83}$	116 5.05	$\frac{71}{3*09}$	76 3.31	$\frac{80}{3,48}$	84 3.65	85 3.70	126 5,48	<u>133</u> 5.79	<u>149</u> 6,48	<u>156</u> 6.79	
	Magns-	(6M)		9.92c	9.64c	<u>11,96</u> c	<u>11.08</u> c	8.84c	<u>11.20</u> c	<u>11.24</u> c	80 6.54	9 <u>,96</u> c	10,800	9.76c	79 6.51	
	Calcium	(Co)									<u>99</u>				$\frac{82}{4_{*}09}$	
	H	ماه		8.0 8.3	7.4 8.3	7.8 8.2	8.0 8.3	8.0 8.6	8.3 8.4	8.2 8.5	8.0 8.3	8.4 8.4	8.4 8.6	8.2 8.4	$\frac{7*8}{8*3}$	 _
	conductance (micramhae pH	0 0 10		1690	1310	1490	1300	1050	1250	1280	1420	1340	1470	1550	1520	
	000 0 40	%Set		87	77	85	82	102	111	06	79	86	137	76	69	
	Dissolved osygan	maa		8.3	8.2	9.8	9,3	11.0	11.7	8.8	8.3	8,3	12.1	6.7	6.7	
-		1		65	55	67	50	54	56	62	56	49	72	72	63	
	Dischorgs Tamp in cfs in oF			4.2	22	17	24	36	23	23	17	3.5	3.0	2.5	1.9	
	Date Date	P.S.d		10-3-63 1345	11-7-63 0945	12-5-63 1515	1-7-64 1645	2-5-64 1315	3-4-64	.4-7-64 1630	5-7-64 0940	6-9-64 1400	7-7-64 1600	8-5-64 1115	9-4-64 1000	

o Field pH

b Labaratory pH.

c Sum of calcium and magnesium in epm.

Sum of calcium and magnessium in spin.
 d loon (F d), alumnum (Al), arearic (As), capper (Cu), lead (Pb), manyanese (Mn), zinc (Zn), and hexavalent chromium (C^{1,16}), reported here as <u>0.00</u>

e Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents

Gravimetric determination.

Amual median and range, respectively. Calculated fram analyses of duplication and by California Department of Fublic Health, Division of Laboratories, or United Stores Public Health, Service Marrel inalyses made by United Stores Geological Survey, Quality Messe, Danate Dopartment of Fublic Health, Euros (USBR), United Stores Public Health, Service Correl District 156-ECD; Merradorian Merra Dovine California (ABD), Los Angieto Dopartment of Manue and Dovi (LADMP), City of Los Angieto, Dopartment of Public Health (LBDM), Emend Testing Laboratoria, Inc. (TL), an California District 100-100, Stores (Dayatorian) and Manue and Dovi (LADMP), City of Los Angieto, Dopartment of Public Health (LBDM), Emend Testing Laboratoria, Inc. (TL), an California Department of Manue (LADMP), City of Los Angieto, Dopartment of Public Health (LBDM), Emend Testing Laboratoria, Inc. (TL), an California Department Manue Resources (DWR), or vi Los Angieto, Dopartment of Public Health (LBDM), Emend Testing Laboratoria, Inc. (TL), an California Department Manue Resources (DWR), or vi Los Angieto, Dopartment of Public Health (LBDM), Entrong Laboratoria, Inc. (TL), an California Department Manue Resources (DWR), or vi al Los Angieto, Dopartment of Anatoria California (LBDM), Entrong Laboratoria, Inc. (TL), an California Department of Wanter California (LDM), City of Los Angieto, Dopartment of Anatoria California (LBDM), Entrong Laboratoria, Inc. (TL), an California Department of Wanter California (LBDM), City of Los Angieto, Dopartment of Laboratoria (LBDM), City of Los Angieto, Dopartment of Laboratoria (LBDM), City of Los Angieto, Dopartment of Wanter California (LBDM), City of Los Angieto, Dopartment of Laboratoria (LBDM), City of Laborator

32505-041 6-61 201 JP

CENTRAL COASTAL REGION (NO. 3)

b Loborotory pH o Field pH

c Sum of calcium and magnesium in opm.

c and or concorrent intervention of the second structure of the second structure (Zn), and heravalent chromoun (C²⁻⁶), reported here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

g Grovimetric determination

h Annual madian and range, respectively. Collocided from molyses or workness on workness made by Colloruio Department of Public Health, Division of Laboratories, or United Stores Public Health Service i Manael analyses made by United Stores Geological Survey, Duality & Yanea Boneth (SSD). United Stores Public Health Service (USPHS): Son Bernardino County Flood Connol District (SSECTC), Menetation 4 Soneth Colloruio (MMD); Les Anglets Department of Menetary, Baucou of Reclamonia (USBR), United Stores Public Health Service (USPHS): Son Bernardino County Flood Connol District (SSECTC), Menetation 4 Soneth Colloruio Michael Colloruio Menetary, Baucou of Reclamonia (USBR), United Stores Public Health Service (USPHS); Son Bernardino County Flood Public Flood Health (LBPPH); Freimol Laboratoria Colloruio Menetary Menet Resources (DMR); as indicated Public Flood Health (LBPPH); Freimol Laboratoria, UTUL, 20 Colloruio Departmentol Menetares (LADPH); City ol Las Anglets, Department of Public Flood Health (LBPPH); Freimol Laboratoria (LandPH); an and scated.

32505-644 6-41 JUL JR

CENTRAL COASTAL REGION (NO. 3)

		pa		-101			af-	nt-	- 1		-1a	mi-	ne.	- ter	
		Anolyz by i		Field determi- nationa		DWR	Field deterni- nations	Field determi- nations	Field determi- natione		Field determ1- nationa	Field determi- natione	Field determi- natione	Field determi- nationa	
	4	bid - Coliform Anolyzad ity MPN/mi by i Dippm													
	Tur-	hid - hig n pom		12		100			62		30			30	
		Hordness as CoCO ₃ Totol N.C. PDM PPM				4 130								380	
		Toto Pop		830		524			210					38	
	Par	solved cent solved edd - in ppm ium				0 50			-						_
	ja T	801 10 10 10 10 10				1270									_
		Othar constituants				A8S = 1.2									
	Į	Silico (SiOg)													
	lion	Boren Silice (B) (SiO ₂)				0.8									
e llie	par m	Fluc- rids (F)	246)												
parts par million	equivalents par million	Ni - trats (NO _S)	(STA.		A. 262)	8.5 0.14				A. 261)					
٩	equiv	Chio- ride (CI)	AS RIVER	304	3.50 (S ¹	238 6.71			235	.65 (ST	216			216	
5		Sul - fats (SO4)	SALIN		NILE	$\frac{331}{6,89}$				MILE 4					
		Bicor- bonets (HCO ₃)	OLNI NI		SALINAS RIVER NILLE 3.50 (STA. 262)	<u>376</u> 6,16				SALINAS RIVER MILE 4.65 (STA. 261)					
Mineral cometitients in		Potas- Corbon- sum ote (K) (CO ₃)	BLANCO DRAIN INTO SALINAS RIVER (STA. 246)		NITVS	51 1,70				SALINA					
Min		Potas- sium (K)	- 2 -			12 0.31									
		Sadium (Na)				244 10.61	-								
		Magna- sum (Mg)				74	_								
		Calcium (Ca)				88 4.39									
-				8,1		6*8 1*6	8.9	8.2	8.4		8.1	8.3	7.6	8.0	
	pacific	(micromhos pH at 25°C) a b		3000		2000			1995		1680			1575	
-	s	n (m o Sef		92		190	259	128	191		221	128	47	116	_
		Dissolved oxygan ppm %Sof		8.7		16,8	23.5 2	12.1	17.7		18,8	11.5	4.5	10.6	
-	-	GLL EO		65		71	69	65	67]		75	20	63	68	-
		Dischorge Tamp Disselved in cfs in ^{OF} oxygan		ę											
		ond time sompled P.S.T.		9-17-64 1353		8-3-64 1515	8-4-64 0335	9-17-64 0407	9-17-64 1445		8-3-64 1820	8-4-64 0300	9-17-64 0345	9-17-64 1410	

b Labaratary pH a Field pH.

Sum af calcium and magnesium in epm.

Sum of colorwhood magnesium in epm. Iron (F.E.) oluminum (A1), respected here 60, lead (Pb), manganese (Mn), zinc (Zn), and hexavelent chramum (Cr⁺⁶), reported here 300 - 300 = 300 m.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves

Gravimetric determination.

32505-D-H 6-61 200 3PU

WATER
SURFACE
Ы
ANALYSES

œ

CENTRAL COASTAL REGION (NO. 3)

	by i by		DWR	Field determi- oations	Field determi- nations	Field determi- nations		DWR	Field determi- nations	Field determi- nations	Field determi- nations	
	Hordnese bid-Coliform ^h Analyzed as CoCO ₃ ¹¹ MPN/mi ^{by 1} Totol N.C.		Ø	P1 de 0a	F1 de na	Ff de nai		ā	F1. den nat	F1. den	Pier	
	Califor MPN/											
Tur-	- piq -		20			20		40			4 2	
	Hordnee es CoCO3 Totol N.C. ppm ppm		445 88			385		369 20			350	
	Tot B					38					35	
-	dis- solved adlids ium in ppm		988					882 47				
Tot	A D C						_	88				
	Other constituents		ABS = 3.1					ABS = 4,9				
	Silico (SiO ₂)											
llion	Baron Silico (B) (SiO ₂)		0.5					0.5				
millior Der mi	Fluo- ride (F)											
ports per million equivalents per million	Ni- trote (NO ₃)	A. 260)	$\frac{27}{0.44}$				SALINAS RIVER MILE 9.51 (SIA. 259)	<u>3.3</u> 0.05				
bd bd	Chio- ride (Ci)	SALINAS RIVER MILE 7.13 (STA. 260)	<u>211</u> 5.95	-		235	 .51 (ST	224 6.32			235	
Ē	Sul - tate (SO ₄)	MILE 7	$\frac{161}{3_*35}$				A MILE	$\frac{111}{2,31}$				
strents	Bicar- bonate (HCO ₃)	S RIVER	439 7.20				AS RIVE	426 6.98				
Mineral canstituents in	Potos- Corbon - Bicar- sium ate bonate (K) (CO ₃) (HCO ₃)	SALIN	0*00				SALIN	0,00				
Mine	Potos- sium (K)		14 0.36					16 0.41				
	Sodium (No)		<u>166</u>					160				
	Calcium Magne-		49 4.05					41.38				
	Calcium (Co)		97 4,84					80 3,99				
	E ala		7.4 8.2	7.7	7.5	1.6		$\frac{7_{\circ}4}{8_{\circ}1}$	7.2	7.4	7.3	
	Conductance Conductance (micrambos of 25°C) a		1630			1575		1590			1628	
	ved (i		63	9	6	54		0	28	m	o	
	Diesalved azygen ppm %Sof		5.5	0.6	6*0	4.9		0.0	2.5	0.3	0.0	
-			72	67	65	69		71	69	67	68	
	Oischarge Temp in Cfe in ^D F											
	Oate ond time sompled P.S.T		8-3-64 1800	8-4-64 0230	9-17-64 0310	9-17-64 1332		8-3-64 1250	8 <i>-4</i> -64 0200	9-17-64 0250	9-17-64 1307	

a Field pH

32505-0-H 6-01 200 UPO

b Laboratory pH.

e Sam of colcium and magnessum in Apm. d Han (Fe), aluminum (A1), arsenic (A4), cooper (Cu), lead (Pb), monganese (Mn), zinc (Zn), and hexarolent chramium (Cr¹⁴⁵), reparted here a 000 except as shown.

e Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

h Amuel median and anage, respectively. Calculated from analyses of duplicate monthy samples made by California Department of Public Health, Dristan of Laboratories, or United Stores Public Health Service. A meneal analogy United Stores Geological Survey, Quelity of Water Bonch (USCS), United Stores Public Kardet (USCS), United Stores Public Health, Service (USPHS), San Bornadina County Flood Control District (SEGECD), Metropoliton Water District of Storets Department of Met Intrins, Survea of Reclamation (USBR), United Stores Public Health, Service (USPHS), San Bornadina County Flood Control District (SEGECD), Metropoliton Water District of Storets California Department of Water, and Power (LADMP), City of Las Angeles, Department of Water, and Power (LADMP), City of Las Angeles, Department of Public Health (LBDPH), Tennand Testing Laboratoris, Inc. (TTL), or California Department of Water and Power (LADMP), City of Las Angeles, Department of Water and Power (LADMP), Try of Langeleth, Cuelon Stater, Department of Water Resources (DMR), as indicated.

CENTRAL COASTAL REGION (NO. 3)

	by i			uses												
	bid - Coliform ^h Analyzed		 	62. 62.	230 . 230.	23.	23 . 62.	62 . 62.	21. 62.	62. 62.	230 . 230.	230. 62.	2400 . 2400.	7000.	23 . 230.	_
	- 1, - C		 	15	-	15	10	40	70	10	4	e	ŝ	10	~	-
	:03	U E Z B	 	0	16	49	49	29	0	0	0	44	66	85	71	•
	Hardness as CaCO ₃	pam pam		494	308	256	278	146	618	578	530	370	260	264	235	
	cent -			35	27	26	26	19	25	33	33	48	53	53	53	
Total	solved solved	in pom									996				069	
											As = 0.01 A8S = 2.3 PO4 = 15			ABS = 6.0	$As = 0.01$ $As = 6.9$ $P0_{4} = 47$	
	Sifica	(SiO ₂)									47				52	
illion	Boron Sitica	(B)		0.2	0.2	0.1	0.2	0.0	0.4	0.4	0.4	0.5	0.4	0.5	0.4	
per m	Flua-	(F)	 ()								0.05					
ports per million equivalents per million	- 12	(EON)	 (STA. 4								45 0.73				50 0.81	
equiv	Chio-	(CI)	RECKELS	$\frac{145}{4.09}$	$\frac{57}{1.61}$	$\frac{37}{1.04}$	<u>52</u> <u>1.47</u>	$\frac{13}{0,37}$	$\frac{1.38}{3,89}$	$\frac{148}{4*18}$	$\frac{152}{4.29}$	$\frac{168}{4_*74}$	<u>132</u> <u>3,72</u>	$\frac{140}{3,95}$	$\frac{146}{4.12}$	
Ē	Sul -	(so.)	EAR SP								53 1,10				102 2.12	
atituents	Bicar-	(HCO ₃)	SALINAS RIVER NEAR SPRECKELS (STA. 43)	602 9.87	356 5.83	252	<u>247</u> 4.05	$\frac{143}{2*34}$	758 12,42	$\frac{732}{12.00}$	<u>686</u> 11.24	<u>398</u> 6.52	<u>196</u> <u>3,21</u>	218 3, 57	3,28	
Mineral constituents	C orbon -	(co_)	SALINAS	$\frac{12}{0_{*}40}$	0 <u>*00</u>	0,00	$\frac{16}{0,53}$	0,000	0,00	$\frac{4}{0.13}$	0,00	0.00	0*00	0,00	0*00	
W	Potas-	(K)	_								38 0 <u>.97</u>				11 0,28	
	Sodium	(0 N)		<u>122</u> 5,31	53 2.31	$\frac{41}{1_*78}$	$\frac{46}{2*00}$	<u>16</u> 0.70	96 4.18	<u>132</u> 5.74	<u>132</u> 5.74	156 6.79	<u>135</u>	<u>135</u> 5.87	<u>130</u> 5.66	
	Magne-			9,89c	<u>6,16</u> c	5, 12c	5,560	2,92c	12.36c	<u>11,56</u> c	48 3,96	7 <u>*40</u> c	5.20c	5.28c	36 2.85	
	Calcium	(00)									<u>133</u> 6.64				37 1.85	
	Ţ	ماه		$\frac{7_*4}{8_*4}$	$\frac{7_*2}{8_*0}$	$\frac{7_{*}6}{8_{*}0}$	8.2 8.6	8 <u>,1</u>	7 <u>*9</u> 8 <u>*2</u>	$\frac{7.8}{8.3}$	7+5	7.8	7 <u>.3</u> 8.0	7.3	7.1 7.3	
Crecific	conductance (micromhon			1440	881	654	738	352	1620	1630	1590	1380	1140	1150	1080	
	p unit	%Sol		48	15	73	147	103	78	123	16	87	104	75	18	
	Dissolved oxygen	£ dd		4.4	1.6	8.1	15,5	11.1	7.9	11.7	1.6	7.8	8.9	6.3	1.7	
	Temp in oF			68	55	52	56	54	59	65	58	70	75	77	64	
	Dischorge Temp in cfs in GF			7.0	26	94	40	450	6.5	7.4	4.9	0*6	0.8	1.0	0.6	
	Date ond time	P.S.T.		10-3-63 1545	11-7-63 0845	12-4-63 1530	1-7-64 1545	2-6-64 1630	3-4-64 1430	4-7-64 1540	5-7-64 0820	6-10-64 1520	7-8-64 1450	8-6-64 1450	9-4-64 0850	

a Field pH

b Laboratary pH.

d has been concreased on a magnetaneous properties of the properties (Ma), zinc (Za), and hexardlent chromium (Cr⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown. c Sum of calcium and magnesium in epm.

Derived fram conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination. -с

Amual median and range, respectively. Calculated fram analyzer of duplicate monthly samples made by California Department at Public Health, Division of Laboratories, or United Stores Public Health, Service Mineral analyses mede by United Stores Geological Mares Datament Stores Department of the Internet. Survey of Reclamation (USBR), United Stores Public Health, Service Correl Datarci (SGECED), Menopation Mare Datarci Mares Datarcians that Internet. Survey of Reclamation (USBR), United Stores Public Health, Service Datarcians (SGECED), Menopation Mare Datarcia (SAD), Loss Angeles, Department of Mares and Pase (LADMF), Cary of Los Angeles, Department of Mares Towards (DAMF), Cary of Loss Angeles, Department of Public Health (LADHF), Cary of Loss Angeles, Department of Mares Towards (DAMF), Cary of Loss Angeles, Department of Mares (DAMF), Cary of Loss Angeles, Department of Public Health (LADHF), Cary of Loss Angeles, Department of Mares (DAMF), Cary of Loss Angeles, Department of Public Health (LADHF), Cary of Loss Angeles, Department of Mares (DAMF), Cary of Loss Angeles, Department of Public Health (LADHF), Cary of Loss Angeles, Department Mares

ANALYSES OF SURFACE WATER CENTRAL COASTAL REGION (NO. 3)

Γ		pez,			<i></i>												
	_	Analyzed by 1			USGS									5			
		Hardness bid - Caliform e CoCO ₃ 117 MPN/mi Total N.C. npom ppm			6.2 230.	13. 13.	6.2 23.	2.3 6.2	6.2 2.3	6.2 23.	23. 6.2	13. 62.	6.2 23.	62 6.2	2.3 9.5	2.3 6.2	
	Tur-	1 90 m				2	20	5	50	10	2.5	4	0	-	۳	1	
		Hordness ee CoCO ₃ Totol N.C. Dom Dom			147	300	80	100	81	108	51	91	136	135	127	248	
_					560	800	518	512	204	554	466	545	594	552	596	756	
	Per				48	53	35	39	36	37	40	38	45	52	47	50	
	Totol	solids in pom										566				1880	
		Other constituents									00 0	$ABS = 0.0$ $PO_4 = 0.00$				AB = 0.00 ABS = 0.1 $P0_4 = 0.05$	
	ĺ	Silica (SiO ₂)										3.7					
	llion	Boron (B)	r r	(e// •	1.8	2.9	1.3	1.3	1.2	1.5	1.7	1.5	1.8	2.0	2.1	2.6	
million	per million	Fluo- ride (F)	, 10m	WTC) ,								$\frac{0.2}{0.01}$					
parts per million	equivalents p	Ni- trate (NO ₃)		1011A16								$\frac{0,9}{0,01}$				2.6 0.04	
٩	equive	Chio- rids (Ci)	10.20	I LIND	$\frac{158}{4*46}$	304	$\frac{70}{1,97}$	$\frac{92}{2 + 60}$	78 2+20	$\frac{92}{2 + 60}$	81 2.29	86 2.43	3.95	$\frac{165}{4+65}$	$\frac{160}{4,51}$	255	
9	:	Sul - fate (SO ₄)		AR VALI								$\frac{294}{6,12}$				670 13,95	
		Bicor- bonete (HCO ₃)		NEAR BL	$\frac{464}{7.60}$	470	498 8.16	458 7.51	$\frac{436}{7,15}$	480 7.87	466	<u>506</u> 8.29	474 7 <u>*77</u>	452 7.41	488 8,00	<u>560</u> 9.18	
Minarol constructu		Corbon- ote (CO ₃)		DAN DENTIO KIVEN NEMA DEAK VALLET FINS SIAILUN (SIA.	$\frac{20}{0+67}$	69 2,30	<u>18</u> 0.60	$\frac{22}{0,73}$	$\frac{39}{1,30}$	$\frac{31}{1.03}$	$\frac{20}{0*67}$	$\frac{24}{0.80}$	$\frac{41}{1,37}$	23 0,93	$\frac{41}{1,37}$	$\frac{30}{1,00}$	
1		Potos- erum (K)		T NEW N								$\frac{2_{*}6}{0_{*}07}$				$\frac{4_{*}4}{0_{*}11}$	
		Sadium (Na)		40	234 10.18	415	128 5.57	150 6.52	<u>133</u> 5.79	<u>149</u> 6.48	142 6.18	<u>156</u> 6.79	226 9.83	$\frac{272}{11,83}$	$\frac{244}{10,61}$	<u>352</u> 15,31	
		Magne- sum (Mg)			11.20c	16.00c	<u>10,36</u> c	10.24c	10,08c	<u>11,08</u> c	9.32c	9.35	11.88c	<u>11,04</u> c	<u>11,92</u> c	157	
		Calcium (Ca)										$\frac{31}{1,55}$				$\frac{44}{2*20}$	
		10 H			$\frac{8.4}{8.6}$	8.2 8.6	$\frac{8,4}{8,5}$	<u>8.4</u> <u>8.7</u>	$\frac{8.4}{8.7}$	8.4 8.6	8.3	8.4 8.6	$\frac{8,4}{8,8}$	$\frac{8,4}{8,6}$	8.4 8.6	$\frac{8,4}{8,5}$	
	Specific	(micromhos f at 25°C)			1960	3150	1370	1510	1390	1520	1410	1540	1970	2100	2010	2740	
		Vo Sat			117	161	104 3	110	96	106	118	111	114	113	158	152	
		Diesolved osygen ppm %Sat			9.4	15,3	11.6	11.8	10.0	10,2	10.0	10.5	10.2	6.9	12.4	12.5	
F	_	e c	-		78	62	67	52	54	61	72	62	67	80	80	75	
		Dischorge Temp in cfs in of			0.2	0.2	7.0	4.5	6.2	4.2	6.4	3.9	6*0	0.1	0.03	0.1	
	_	P.S.T			10-3-63 1530	11-6-63 1315	12-5-63 1615	1-9-64 1500	2-5-64 1510	3-3-64 1615	4-9-64 1630	5-5-64 1320	6-9-64 1515	7-7-64	8-5-64 1000	9-2-64 1200	

o Field pH

b Laboratory pH.

c Sum of colorum and magnessium in epm. d Iran (Fa), olumnum (AI), arsenic (As), cooper (Cu), load (Pb), manganese (MA), zinc (Zn), and hexavalent chramum (Cr⁺⁶), reported here as 0.00 0.00

Derived from conductivity vs. TDS curves .

Determined by addition of analyzed constituents

Gravimetric determination.

Annel median and range, respectively. Calculated from analyses and aby Calciania Department of Public Mealth, Division of Leborouries, or United Strates Public Mealth Service. Mareed analyses made by United Stores Geological Survey, Ouchry of Water Boach (USGS), United Stores Department of Inclusion. Survey of Reclamation (USBS), United Stores Public Mealth Service. (USPR), Son Benedating County Flood Cound District 1866-FCD; Manadorian Mere District of Submer (MD); List Angels: Department of Mater Andres Department of Mater Andres Department of Mater Andres Department of Public Mealth Service. (USPR), Son Benedating County Flood Public Mealth (LDBP); Remond Terring Loborators, Inc. (TL), se Calciano Mater Resources (DMR), sin ad casa Angels, Davartment of Public Mealth Service. (TL), se Calciano Department of Mater Andres Department of Mater Analysis. Department of Public Mealth Service (USPR), Disparce Andres Service (USPR), Son Mater Andres Service (USPR), Son Mater Andres Department of Mater Andres Service (USPR), Son (LADMP); City al Las Angels, Department of Mater Andres Service (USPR), Son (LADMP); City al Las Angels, Department of Mater Andres Service (USPR), Son Mater Andres Service (USPR), Son (LADMP); City al Las Angels, Department of Mater Andres Service (USPR), Son (LADMP); City al Las Angels, Department of Tuber (LADMP); City al Las Angels, Department of Mater Andres (LADMP); City al Las Angels, Department of Tuber (LADMP); City al Las Angels, Department of Angels, Department of Tuber (LADMP); City al Las Angels, Dep

32505-646 6-61 200 sP0

CENTRAL COASTAL REGION (NO. 3)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	1							Mini	eral can	Mineral constituents in	Ē	pointe	ports per million equivalents per million	million ler mil	lion			Totol			1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Drechorge Temp in cfs in of	solved kygen %oSat	conductant (micromho at 250 C	L aio	Colcium (Co)	(6M) muis -aubow	Sodium (No)	Polas- sium (K)	Corbon - ote (CO ₃)	Bicar - banate (HCO ₃)	Sul - fate (SO ₄)	Chio- ride (CI)	NI- Trote (NO ₃)	Fluo- ride (F)	5	1 1		solved solide in pom	in le	CoCO CoCO Trol N PP		MPN/mi	Anolyzed by 1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																								
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$									0 -		IVER AT	ROBLES	OEL RIO	(STA.	83)									
		2.4 63		439	7. 6 7. 6		<u>3,20</u> c	$\frac{26}{1,13}$		0,00	$\frac{1.52}{2.49}$. <u>25</u> 0,71			0*0							230. 23.	USGS
	14	56		382	$\frac{7_*4}{8_*1}$		2.98c	$\frac{21}{0,91}$		0.00	$\frac{150}{2,46}$		$\frac{18}{0,51}$			0*0							6.2 6.2	
$ \frac{1}{12} \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	54		311	$\frac{7_{*}6}{8_{*}1}$		2.44c	17 0.74		0*00	$\frac{122}{2_{*}00}$		$\frac{14}{0,39}$			0.0							6.2 13.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	54		348	8.3 8.5		2.58c	20 0,87		4 0,13	$\frac{121}{1,98}$		20 0,56			0.0							0,62	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	73	50		221	8.0 8.2		<u>1.76</u> c	4.0 0.17		0*00	94 <u>1,54</u>		9.5 0.27			0*0				6			2.3	
	23	55		275	$\frac{8.1}{8.4}$		<u>2.16</u> c	<u>15</u> 0.65		$\frac{3}{0,10}$	<u>106</u> <u>1,74</u>		15 0.42			0,1							2.3 6.2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00	60		269	8.3		2 <u>*04</u> c	<u>13</u> 0.57		0.00	107 1.75		$\frac{11}{0_*31}$			0*0				-			2.3	
$ \begin{bmatrix} 66 \\ 10.6 \\ 113 \\ 5.5 \\ 5$	29	52	 	286	$\frac{6,8}{7,9}$		9.2 0.76	15 0.65	2.1 0.05	0,00	$\frac{113}{1,85}$	32 0.67	14 0.39	0.01	0.2 0.01			s = 0,00 4 = 0,00	180				6.2 2.3	
1 16 11.2 13 23 23 1 16 1.13 23 23 24 23 1 10 1.13 23 24 113 24 1 10 1.13 1.13 24 113 24 1 1 1 1 10 113 24 1 1 1 1 1 10	14	69		289	8.4 8.5		2,14c	$\frac{16}{0,70}$		2 0,07	114 1.87		$\frac{13}{0_*37}$			0.2				25			5. 6.2	
	0			456	8.0		3, 50c	$\frac{28}{1*22}$		3 0,10	<u>144</u> 2.36		$\frac{23}{0,65}$			0*0							23.	
	DRY		 																					
	DRY		 																		<u> </u>			

Laboratory pH.

c Sum of calcium and magnesium in epm. d_{00} (ca), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves

Determined by addition af analyzed constituents.

32505-0-H 6-61 200 JPD h Annual median and range, respectively. Calculated from analyses of digitation enonity samples made by Calculation Department of Public Health, Devision of Laboratoriase, or United Stores Public Health Service. i Mineral analyses made by United Stores Caelogical Survey. Quality of Natere Bonetine Mineral United Stores Public Health Service. Cannol District (SGECFCD), Mentation displayment California Department of Manual Caelogical Survey. Deally, of Manual Caelogical Survey. Department of Manual Caenory Flood Caenol District (SGECFCD), Mentation displayment California Department of Manual Manual Caenory Plood Public Health, LDDPHP, Fermiol Testing, Laborators, Inc. (TUL), an California Department of Manual Caenory Stores, Department of Laboratoria Manual Public Health, LDDPHP, Fermiol Testing, Laborators, Inc. (TUL), an California Department of Manual Mentation, Survey Caenor, Storestonenania of Laboratoria Caenory Storestonenania of Displayment and Laborators, Inc. (TUL), an California Department of Manual Mentation, Storestonenania at Dublic Health, LDDPHP, City of Lang Bacch, Department of Laboratoria Caenory Storeston, Inc. (TUL), an California Department of Manual Mentation, Storestonenania at Dublic Health, LDDPHP, City of Lang Bacch, Department of Displayment at Displayment at Storestonenania Mentatory Storestonenania (Laboratory Lang Bacch, Department of Laboratory Mentation), Amanual Mentation, Laboratory at Lang Bacch, Department of Laboratory at Laborat

CENTRAL COASTAL REGION (NO. 3)

						_									
	Analyzed by f		USGS												
	bid - Coliferm ^h 11y MPN/mi		+62 2+3	6.2	23. 2.3	2.3 5.0	62. 13.	2.3 6.2	5. 1.3	23.	1.3	6.2 6.2	6.2 62.	0.23 62.	
Tur-	- 11 10 11 11 11		-	ŝ	ŝ	10	10	10	7	4	2	en	5	-7	
	N CO3		12	23	25	23	19	74	29	19	17	16	16	19	
	Hordr es Co Totol ppm		132	140	156	148	115	249	151	126	124	124	129	135	
	cent eod - ium		21	17	22	22	17	23	20	16	17	16	16	14	
Total	solide in som									181				174	
	Other constituents				As = 0.00				000 = •*	$P0_4 = 0.00$			00 0	ABS = 0.0 ABS = 0.0 PO4 = 0.05	
	Silica (SiOg)									14				11	
million	Baron (B)		0*0	0.1	0.1	0.0	0.0	0.2	0.1	0.1	0.0	0.1	0.1	0.1	
par mil	Flua- ride (F)	_								0.02					
ports per million aquivalants per mill		SALINAS RIVER NEAR BRADLEY (STA. 43c)						-		1.4 0.02				0,9 0,01	
d	Chia- ride (CI)	ADLEY (9.3 0.26	8.5 0.24	$\frac{11}{0_*31}$	$\frac{11}{0,31}$	6. 5 0. 18	28 0.79	$\frac{11}{0.31}$	7.3	$\frac{3,5}{0,10}$	<u>5.5</u> 0.16	5.5 0.16	5.8 0.16	
Ē	Sul - tate (SO ₄)	NEAR 8F								<u>33</u> 0,69				<u>30</u> 0.62	
etituents	Bicar - banate (HCO ₃)	RIVER 1	146 2,39	$\frac{143}{2*34}$	<u>156</u> 2.56	141	$\frac{117}{1,92}$	$\frac{197}{3 \cdot 23}$	$\frac{141}{2*31}$	$\frac{130}{2.13}$	$\frac{127}{2*08}$	$\frac{130}{2*13}$	138 2+26	$\frac{142}{2,33}$	
Mineral canetituents	Potoe-Carban- sium 01e (K) (CO ₃)	SALINAS	0*00	0,00	$\frac{2}{0,07}$	$\frac{6}{0,20}$	0,00	9 0 <u>*</u> 30	4 0.13	0,00	$\frac{2}{0,07}$	$\frac{1}{0,03}$	0,000	0*00	
Min	Potos- sum (K)	- ·								<u>1.6</u> 0.04				$\frac{1.9}{0.05}$	
	Sodium (Na)		16 0.70	13 0,57	$\frac{20}{0*87}$	$\frac{19}{0,83}$	$\frac{11}{0.48}$	$\frac{34}{1.48}$	$\frac{17}{0_*74}$	$\frac{11}{0.48}$	$\frac{12}{0,52}$	11 0.48	$\frac{11}{0.48}$	$\frac{10}{0_{*}44}$	
	Magne- Mugne- (Mg)		2.64c	2,80c	<u>3, 12</u> c	2.460	2,30c	4.98c	3,02c	13	2.48c	2.48c	2.58c	$\frac{13}{1.10}$	
	Calcium (Ca)									$\frac{29}{1.45}$				$\frac{32}{1.60}$	
	ماہ 🗵		$\frac{7_{*}8}{8_{*}0}$	$\frac{7 \times 5}{8 \times 1}$	$\frac{8,1}{8,3}$	8.2 8.6	$\frac{7,7}{8,1}$	8.5	8.5	8.0 7.8	8.0	8.2 8.3	$\frac{7_{*}8}{8_{*}1}$	$\frac{7,8}{7,9}$	
Conclus	conductance (micramhos at 25°C)		319	323	383	354	272	600	360	288	284	287	295	303	
	gen (r %Sat		66	96	97	94	66	110	100	66	107	75	66	96	
	Dieso oxy opm		9* 99	9.7	10.1	10,8	10.6	10,5	9.3	10.2	10.5	6.5	9.5	9.3	
	Temp		69	58	56	48	53	63	65	56	60	71	62	61	
	Dischorge Temp in cfe in of		390	169	193	165	469	42	177	263	405	465	576	546	
	Dote and time P.S.T.		10-2-63 1500	11-6-63 1105	12-3-63 1440	1-8-64 1930	2-4-64 1740	3-3-64 1400	4~8-64 1435	5-5-64 1045	6-11-64 0840	7-9-64 1630	8-5-64 0815	9-2-64 0920	

a Field pH

b Laborotory pH

d Tran (Fe), alumium (Al), arsenic (As), cosper (Cu), lead (Pb), manganese (Mn), zinc (Za), and hexarolert chramium (Ci^{*5}), reported here as ^{0.0}/_{0.00} escept as shown.
e Derived from conductivity vs TOS curves.
f Determined by addition of analyzed constituents.

⁹ Gravmetric determination.
A model media and respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Loboratories, or United Stores Public Health Service.
A monal median and respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health United Stores Public Health Service.
A monal median and respectively. Calculated from analyses of duplicate monthly samples made by California Department of America (USPR). United Stores Public Health Service.
A monal median and Stores Geneticated Stores, Quelity of Ware Branch (USDR). United Stores Public Health Service.
Control District (SSECCD). Natroshoftment and Stores Storement of Marce and Power (LADPP). City of Les Angeles, Department of Power (LADPP). City of Les Angeles, Department of Power (LADPP). City of Les Angeles, Department of Pacific Health (LEDPP). City of Les Angeles, Department of Pacific Health (LEDPP). City of Les Angeles, Department of Pacific Health (LEDPP). City of Les Angeles, Department of Pacific Health (LEDPP). City of Les Angeles, Department of Pacific Health (LEDPP). City of Les Angeles, Department of Pacific Health (LEDPP). City of Les Angeles, Department of Pacific Health (LEDPP). City of Les Angeles, Department of Pacific Health (LEDPP). City of Les Angeles, Department of Pacific Health (LEDPP). City of Les Angeles, Department of Pacific Health (LEDPP). City of Les Angeles, Department of Pacific Health (LEDPP). City of Les Angeles, Department of Pacific Health (LEDPP). City of Les Angeles, Department of Pacific Health (LEDPP). City of Les Angeles, Department of Pacific Health (LEDPP). City of Les Angeles, Department of Pacific Health (LEDPP). City of Les Angeles, Department of Pacific Health (LEDPP). City of Les Angeles, Department of Pacific Health (LEDPP). City of Les Angeles, Department of Pacific Health (LEDPP). City of Les Angeles, Department of Pacific Health (LEDPP). City of Le

ANALYSES OF SURFACE WATER

CENTRAL COASTAL REGION (NO. 3)

					Concidio					Ci M	sraf cor	Minsraf constituents in	с 5	squivo	ports par million squivolents par million	million as mil	ion			Totel			Tur-	-	
Date and time p.S.T.	Dischorge Tamp in cfs in of	e Tamp in of	Diss 0s) PPM	Dissolvad osygen ppm %Sol	(micromhos pH at 25°C) a b	I alo	Catcium (Ca)	Magne- sum (Mg)	Sadium (Na)	Potas- sium (K)	Corbon- (CO ₃)	Bicor- bonats (HCO _S)	Sul - fots (SO ₄)	Chio- rids (CI)	Ni- trots (NO ₃)	Fluo- ride (F)	ç	Silico (SiO ₂)	Other constituents	solved cent solved cent in per	ing - La	Hordnass os CoCO _S ppm ppm		Hordnass bid - Coliform" Analyzed as CoCO ₃ 11y MPN/mi by i Total N.C. ppm ppm	Analyzed by i
										.,	SAN ANTO	SAN ANTONIO RIVER NEAR PLEYTO (STA. 43d)	ER NEAR	PLEYTO	(STA. 4.	3d)						-			
10-2-63 1340	DRY																				_				U SGS
11-6-63 1020	0.2	63	10.4	109	504	8.0 8.5		3,940	34 1,48		6 0.20	<u>196</u> 3,21		$\frac{22}{0,62}$			0.1				27	197 2	26 1	23. 23.	
12-3-63 1530	30	58	9*5	54	426	$\frac{8.1}{8.3}$		<u>3,76</u> c	$\frac{17}{0_*74}$		4 0.13	$\frac{172}{2*82}$		9.0 0.25			0.1				16	188 4	40 2	2.3 6.2	
1-8-64 1900	13	48	10,1	88	439	7.8 8.5		<u>3,84</u> c	$\frac{19}{0,83}$		$\frac{7}{0.23}$	$\frac{169}{2.77}$		13 0,37			0.0				18	192 4	42 0	2.3 6.2	
2-4-64 1700	67	59	10.8	108	385	8.2 8.4		<u>3.44</u> c	$\frac{13}{0_*57}$		3 0,10	<u>156</u> 2.56		11 0,31			0.0				14	172 3	39 1	6.2 2.3	
3-3-64 1300	25	63	10.3	108	419	$\frac{8.1}{8.4}$		3.82c	$\frac{40}{1_*74}$		6 0.20	$\frac{164}{2.69}$		$\frac{12}{0_*34}$			0.1				31	191 4	47 10	13.	
4-8-64 1520	16	75	8.6	103	423	8.3 8.6		3.76c	17 0.74		$\frac{7}{0_*23}$	$\frac{163}{2.67}$		10 0.28			0.1		6		16	188 4	43 1	62. 23.	
5-5-64 0945	11	59	11.0	110	433	8.4 8.4	<u>52</u> 2.59	15 1,25	18 0.78	$\frac{1.6}{0.04}$	$\frac{3}{0,10}$	178 2 . 92	57 1.19	12 0.34	$\frac{1,2}{0,02}$	0,3 0,02	0.0	53	AB = 0.00 ABS = 0.1 $PO_4 = 0.20$	288	17	192 4	41 1	62. 6.2	
6-11-64 0930	0.2	75	11.2	134	455	$\frac{8.4}{8.4}$		3.72c	$\frac{23}{1,00}$		4 0,13	178 2.92		15 0.42			0.1				21	186 3	33 0	50 . 230.	
7-9-64	Ponded																								
8-5-64	Ponded																								
9-2-64 0845	OKY																								
o Field of																	1	1			1	1			

 Laboratory pH. o Field pH

Sum of colorium and magnets we in e.g.m. Iron (Fe), and hereavient chromium (C⁺⁶), reported here (Cu), lead (Pb), manganese (Mn), z.n.c. (Zn), and hereavient chromium (C⁺⁶), reported here $a_{0,0}^{-0}$ except as shown. Sum of colcium and magnesium in epm.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves

Grovimetric determination.

Annal median and range, respectively. Colculated fram analyses of duplicate membry samples made by Collonio Department of Public Health, Division of Laboratories, or United Stortes Public Health Service. Mered markers made by United States Goological Survey, Duality Meres Boardment of Public Health, Division of Laboratories, or United Stortes Public Health Service. Control District 186:FCD; Merenderine der Stortes, California (MSD); Los Angeles, Department of Merens, Bursou of Reclamation (USBR); United Stortes Public Health Service (USPHS); Son Beach, Department of Control District 186:FCD; Merenderine der Stortes, California (MSD); Los Angeles, Department of Merens and Power (LADMP); City at Los Angeles, Department of Public Health (LBDP); The mond Testing Laboratores, Inc. (TTL), per California Department of Weart sond Power (LADMP); City at Los Angeles, Department of Stortes, Department of Stortes, Department of Weart sond Power (LADMP); City at Los Angeles, Department of Stortes, Department of Weart sond Power (LADMP); City at Los Angeles, Department of Weart Sonders, Inc. (TTL), per California Department of Weart Sonders, Inc. (TTL), per California Department of Weart Sonders, Inc. (TTL), per Angeles, Department of Weart Sonders, Department of Weart Sonders, Inc. (TTL), per California Department of Weart Sonders, Inc. (TTL), per California Department of Weart Sonders, Inc. (Weart Sonders, Inc. (Weart Sonders, Inc. (Weart Sonders), Department of Weart Sonders, Inc. (Weart Sonders, Inc. (Weart Sonders), Department of Weart Sonders, Inc. (Weart Sonders), Dep

32505-0-1 6-61 200 380

CENTRAL COASTAL REGION (NO. 3)

<u> </u>					-											
		Anolyzed by i		USCS												
	4	total NC npm total NC npm ppm ppm		23.	6.2 2.3	0.23	2.3	2.3	62. 6.2	2.3	0.62	6.2 6.2	2.3	2.3	2.3	
	Tur-	u ppa		4	1	5	\$,	20	end .	4	-1	2		1	
		N COS		16	17	18	19	16	24	14	17	25	19	20	16	
				114	122	121	121	98	160	106	110	123	119	124	126	
	Per			12	13	13	13	14	13	14	13	13	13	13	13	
L	Toto toto	solived con solids in ppm ium									152				165	
		Other constituente								00	ABS = 0.0 PO4 = 0.00			2	AB = 0.01 ABS = 0.0 PO ₄ = 0.05	
	T	Silico (SiO _e)									12				의	
	lion	Boron (B)		0.1	0.1	0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
milio	per million	Fluo- ride (F)	(q£ †								$\frac{0.2}{0.01}$					
perts per milion	equivalents	Ni- trote (NO _S)	L (STA.								$\frac{1,2}{0,02}$				$\frac{0.9}{0.01}$	
°	aduive	Chio- ride (CI)	N MIGUE	<u>5.4</u> 0.15	5,5 0,16	4.0 0.11	$\frac{6.0}{0.17}$	5.0 0.14	$\frac{11}{0_*31}$	$\frac{4_{*}5}{0_{*}13}$	5.5 0.16	$\frac{3.5}{0.10}$	4.5	5.0 0.14	5.2 0.15	
9		Sul - tote (SO ₄)	NEAR SA								$\frac{25}{0*52}$				24 0.50	
atituanti		Bicor- bonote (HCO _S)	RIVER	$\frac{113}{1,85}$	$\frac{128}{2*10}$	$\frac{126}{2*07}$	<u>115</u> <u>1.88</u>	$\frac{100}{1.64}$	<u>156</u> 2.56	$\frac{104}{1_{*}70}$	$\frac{114}{1,87}$	$\frac{117}{1,92}$	$\frac{118}{1.93}$	$\frac{127}{2,08}$	<u>134</u> 2.20	
Minerol constituents		C or bon - 016 (C 0 ₅)	NACTATENTO RIVER NEAR SAN MIGUEL (SIA. 43b)	$\frac{3}{0,10}$	0*00	0°_00	$\frac{5}{0_{*}17}$	0*00	$\frac{5}{0*17}$	$\frac{4}{0,13}$	0*00	$\frac{1}{0,03}$	2 0.07	0,00	0*00	
N.		Potos- eium (K)	NA								$\frac{1.5}{0.04}$				2.1 0.05	
		Sodium (No)		$\frac{7.2}{0.31}$	8.3 0.36	$\frac{8,1}{0,35}$	8.5 0.37	7 <u>*3</u> 0 <u>*32</u>	$\frac{11}{0.48}$	$\frac{8.1}{0.35}$	7 <u>*8</u> 0 <u>*34</u>	$\frac{8.4}{0.37}$	8.2 0.36	8.4 0.37	8.6 0.37	
		Mogne- mu:s (QM)		2.28c	2.45c	2,42c	<u>2,42</u> c	<u>1.96</u> c	3.20c	<u>2.12</u> e	$\frac{12}{1,00}$	2.46c	2.38c	2.48c	$\frac{12}{0_*97}$	
		Colcium (Co)									$\frac{24}{1*20}$				$\frac{31}{1+55}$	
		포 elo		8.3 8.3	6.8 8.0	<u>8.4</u> 8.2	<u>8.4</u> 8.5	8.0	7.6	$\frac{8,4}{8,5}$	8.4	8.0 8.3	8.4 8.4	7.8	7.3	
	Specific	(micromhos of 25°C)		252	269	264	261	220	335	241	242	252	257	369	279	
		gen (r % Sot		134	06	118	106	117	87	129	96	118	116	92	82	
		bp m		12.1	9.5	12.1	11.2	11.9	9.3	11.4	10.9	12.2	10.2	9.6	8.2	
	Temo	4		68	54	57	54	57	53	70	49	56	70	55	59	
	a chord of the second of the s	in cfs in of		400 est.	Bradley 169	Bradley 193	500 est.	600 est.	2.4	163	281	410	470	558	514	
		ond time sompled P.S.T.		10-2-63 1515	11-6-63 0 0920	12-3-63 @ 1645	1-8-64	2-4-64 1600	3-3-64 1010	4-8-64 1630	5-5-64 0735	6-11-64 1030	7-9-64 1540	8-5-64 0615	9-2-64 0750	

o Field pH.

b Loborotory pH

Sum of colicium and magnesium in opm. Fran (Fe), aluminum (M), arsanic (A2), cosper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and heavelent chromium (C.⁺⁶), reported here as $\frac{0.0}{00}$ except as shown.

Derived from conductivity vs TDS curves

Datermined by addition of analyzed constituents.

Gravimetric determination.

32505-6-4 6-61 200 SPO Annul median and range, respectively. Calculated fram analyses al duplicate monthly samples made by California Department of Public Meallin, Burnis and Stongs Public Meallin Service. Mareal analyses mede by United Steres Geological Survey, Quality Merice Burnes (USSS), United Stongs Public Meallin Service (USPRS), Son Bernardina County Flood Control District (SBCFCD), Merice and Service of Southon California (MSD); Las Angelos Department of the Interior, Burnea of Reclamation (USBS), United Storgs Public Mealth Service (USPRS); Son Bernardina County Flood Control District (SBCFCD), Merice and Service of Southon California (MSD); Las Angelos Department of Neuroir dup Service (USPRS); Son Bernardina County Public Mealth (LBDPR); Emand Testing Laberates, Inc. (TTL), por California Department of Neurosci (DNR); City of Los Angelos, Department of Public Mealth, EDPR); Envio Hadink Service Lang Beech, Department of Public Mealth (LBDPR); Enring Laberates, Inc. (TTL), por California Department of Neurosci (DNR); City of Los Angelos, Department of Public Mealth, LBDPR); City of Lang Beech, Department of Public Mealth (LBDPR); Enring Laberates, Inc. (TTL), por California Department of Neurosci (DNR); City of Los Angelos, Department of Neurosci (DNR); City of Los Angelos, Department of Total Control Department of Control Control Control Department of Neurosci (DNR); city of Los Angelos, Department of Neurosci (DNR); City of Los Angelos, Department of Neurosci (DNR); city of Los Angelos, Department of Neurosci (DNR); city of Los Angelos (DNR); c

ANALYSES OF SURFACE WATER

CENTRAL COASTAL REGION (NO. 3)

	pe															
	Anolyz			USGS												
	Hordnass bid- Coliformh Anolyzed					-	620. 230.	230. 230.	6.2	1300.						
	1 - Al	n pộm					10	5	20	2						
	dness to CO.	D B D R C					106	129	100	141						
	Hor	Total					354	382	380	384						
	solved sod	5	 		_		34	22	31	26	_					
Tate	801va	bilog In ppi	 				_									
		Other constituents														
	Cilico	(SiO ₂)	 													
lio	1 4	(B)					0.2	0.0	0.4	0.2						
million mi	Fluo-	(F)	3a)													
ports par million		(NO ₃)	STA. 43													
ports par million aquivalents per million	Chio-	(CI)	SALINAS RTVER AT PASO ROBLES (STA. 43a)				84 2.37	54 1,52	64 1.81	65 1.83						
ē	Sul -	fots (SD ₄)	I PASO													
Minarol constituants in	Bicor-	bonots (HCO ₃)	RTVER A				<u>286</u> 4.69	<u>308</u> 5.05	<u>330</u> 5.41	296 4.85						
inerol col	C or bon -	(K) (CO ₃)	SALINAS				8 0.27	0.00	6 0.20	0.000						
2	Potos-	(K)							_							
	Coduum.	(oN)					82 3.57	50 2,18	78 3.39	$\frac{62}{2*70}$						
	dogns-	(Mg)					7 <u>,08</u> c	7 <u>*64</u> c	7.60c	7 <u>,68</u> c						
	- minologi	(Co)														
	Æ	e1.0					$\frac{8,2}{8,4}$	8.0 8.0	8.2	<u>8.4</u> 8.0						
	conductance (micromhos pH	of 25°C)					1010	920	1000	951						
	p ce	%Sot	 				105	87	98	20						
	Dissolved osygen	ppm %Sot					10.8	8,2	11.2	6.2						
	Temp in oF						56	1 9	84	70						
	Dischorge Temp in cfs in oF			DRY	DRY	DRY	0°4	10	6.0	8.9	DRY	DRY	DRY	DRY	DRY	
	Oote ond time			10-2-63 1300	11-6-63 0830	12-3-63	1-8-64 1630	2-4-64 1520	3-3-64 0910	4-8-64 1810	5-5-64 0645	6-11-64 1130	7-9-64	8-5-64	9-2-64 0730	
-			 		-						-			-		

a Field ph.

b Loborotory pH

c Sum of calcium and mognesium in epm.

Ino. (F.a), aluminum (A1), arsonic (A3), copper (Cu), lead (Pb), manganese (Mn), zinc (Za), and hesevalent chromium (Ci⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown. Derived from conductivity vs TDS curves.

Determined by oddition of analyzed constituents.

Gravimetric determination.

Amuol median and range, respectively. Colculated from analyses of duplicate monthly samples made by California Department of Public Healin, Duration of Lobordoures, or United Storkes Public Healin, Service Mineral Jones Realing and Merie Benedian (USSR). United Storkes Public Healin, Service Course District Storkey, Course District Schedurg, Service Mineral Schedurg, Merie Medin, Service Mineral Schedurg, Merie Medin, Service Mineral Schedurg, Course District Medin, Service Mineral Schedurg, Service Mineral Schedurg, Service Mineral Schedurg, Course District Medin, Service Mineral Schedurg, Course District Schedurg, Service Mineral Schedurg, Course District Medin, Service Mineral Schedurg, Service Mineral Schedurg, Service Mineral Schedurg, Course District Schedurg, Service Mineral Schedurg, Course District Medin, Service Medin, Service Mineral Schedurg, Service Mineral Schedurg, Service Mineral Schedurg, Service Mineral Schedurg, Service Minera Conneol District (SCFCD), Mineral Schedurg, Mineral Mineral Mineral Maner and Power (LADMP), Ciry al Los Angeles, Department of Merie Maneral Schedurg, Service Mineral Mineral Mineral Mineral Schedurg, Service Schedurg, Service Mineral Schedurg, Service Schedurg, Service Schedurg, Service Schedurg, Service District Mineral Schedurg, Service District Mineral Schedurg, Service Mineral Schedurg, Service Sc

ANALYSES OF SURFACE WATER I ADLE U-2

DALKO	SOUTH BAY AQUEDUCT	
5	TH BAY	
ANALIJES UP SURFACE WH	LUOS	

		p		 												 	1
L		Anoiyz by 1		 	DWR											 	
	-	Hordnass bid - Coliform Anolyzed os CoCO3 11 MPN/mi by 1 by 1															
	Tur-	- piq -															
		ac 0.3	PDM PDM		28	37	64	48	94	67	51	35	16	22	36		
L			P P P	 	115	117	117	124	181	147	144	107	87	06	108		
	Per-	sod -	-	 	48	67	52	52	50	47	99	17	42	47	55	 	
	Totel	solved			286	295	314	333	474	349	328	218	183	217	311		
		Other constituents				Pb=0.00 Nn=0.00 Zn=0.00							Vb=0,00 Vn=0,00 Zn=0,00 Fe=0,32				
					cu=0.02 Zn=0.00	A1=0.03 A9=0.00 Cu=0.01	Cu=0.02 Zn=0.00	Cu=0,00 2n=0,00	Cu=0,00 2n=0,00	Cu=0,00 Zn=0,00	Сы=0, 00 Zn=0, 00	Cu=0,00 Zn=0,00	A1=0.07 As=0.00 Cu=0.00				
		Silica			18	16	17	<u></u>				0				 	
ę	llion	Boron		 207) I	0.19	0* 30	0,38	0.40	0.40	0,20	0,30	0.20	0, 10	0.20	0.10		
Ē	Par a	Fluo- rids		 (STA.	$0_{*}1$ $0_{*}00$	0.2 0.01	$\frac{0.2}{0.01}$	0.00								 	
ports per million	squivalants par million	Ni-	(NO ₃)	PUMPING FLANT (STA, 207)	2.6 0.04	$\frac{2 \cdot 1}{0 \cdot 03}$	$\frac{2 + 5}{0 + 04}$	$\frac{2.4}{0.04}$	4.0 0.06	$\frac{3,3}{0,05}$	3.1 0.05	$\frac{0,7}{0,01}$	<u>1,7</u> 0,03	$\frac{0_{44}}{0.01}$	0.6 0.01		
	A ID B	Chio-	(CI)	 PUMPING	74	76 2,14	$\frac{81}{2,28}$	88 2.48	128 3.61	$\frac{90}{2 + 54}$	$\frac{80}{2 + 26}$	<u>55</u> 1.55	35 0,99	$\frac{58}{1,64}$	3,07	 	
é		Sul - fots		TH BAY	<u>38</u> 0,79	45 0+94	56 1.16	$\frac{62}{1,29}$	$\tfrac{102}{2,12}$	$\frac{66}{1_*37}$	$\frac{60}{1 + 25}$	$\frac{34}{0_*71}$	28 0, 58	$\frac{22}{0,46}$	$\frac{33}{0,69}$		
atituente		Bicor- bondte	(HCO ₃)	FOREBAY AT SOUTH BAY	$\frac{1.06}{1_{*}74}$	97 1+59	90 1.48	93 1.52	$\frac{106}{1.74}$	98 1,61	113	<u>88</u> 1,44	87 1.42	83 1,36	88 1.44		
Minarol constituents		Carbon-	(CO3)	FOREBAN	0*00	00*00	$\frac{0}{0,00}$	0 <u>*00</u>	$\frac{0}{0,00}$	0,00	0 0,00	$\frac{0}{0,00}$	0*00	0.00	0,000		
- W		Potas-	ŝ	BETHANY	2.9 0.07	$\frac{2.6}{0.07}$	$\frac{2.1}{0.05}$	$\frac{2 \cdot 1}{0 \cdot 05}$	$\frac{3.5}{0.09}$	$\frac{3.0}{0.08}$	$\frac{2 \cdot 7}{0 \cdot 07}$	$\frac{2 \cdot 5}{0 \cdot 06}$	$\frac{2.1}{0.05}$	$\frac{2 \cdot 3}{0 \cdot 06}$	$\frac{3,1}{0,08}$		
		Sodium	()	 _	50 2,18	54 2.35	$\frac{60}{2.61}$	$\frac{63}{2_*74}$	87 3.78	62 2.,70	<u>59</u> 2,57	35	<u>30</u> 1,30	<u>38</u> 1.65	64 2.78		
		Mogna-			$\frac{13}{1.05}$	$\frac{14}{1.14}$	$\frac{13}{1.04}$	$\frac{14}{1,18}$	$\frac{21}{1,72}$	$\frac{16}{1,29}$	17	11 0,89	<u>11</u> 0, 89	$\frac{12}{1.00}$	$\frac{15}{1.26}$		
		Colcium	1001		25 1.25	$\frac{24}{1.20}$	$\frac{26}{1,30}$	$\frac{26}{1,30}$	<u>38</u> 1,90	<u>33</u> 1,65	30	$\frac{25}{1.25}$	17 0.85	16	18 0.90		
		H ^d «	10	 	7.7	7.7	7.4	7.8	7,8	7.7	7.8	8.1	1.8	8.0	8.1	 	
	Spacific	(micromhos f			506	522	551	588	815	616	585	406	322	382	566		
		Dissolvad	ppm %Sof	 													
		d Lo e															
		Water Tamp (levation in OF				237.5	229.9		231.0	234.7		233.9	232.6	230.3	230.6		
		and time sompled	P.S.T		10-28-63 1225	12-2-63 1530	1-6-64 1410	2-3-64 1345	3-2-64 1330	4-1-64 1530	5-1-64 1430	6-1-64 1045	7-1-54 1020	8-1-64 0845	9-1-64 0930		

a Field pH

b Laboratory pH

Sum af calcium and mognesium in epm.

Sum of colorum and mogeneration in error. Lea (Fe), oluminum (A1), system (A3), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and heravalent chromium (Cr⁻¹), reported here as ⁰0 except as shown. р

Derived from conductivity vs TDS curves .

Determined by addition of analyzed constituents

Grovimetric determination

schumi mul an Ru h. Annual median ond range, reservery. Calculared from molyses of duplicate monthy samples made by Caldinana Department of Public Health, Division of Lobaratories, or United Stores Duplie Health Servec a Manetal analyses made by United Stares Casilogical Survey, Ouality of Wasee Bancol (1955), United Stares Stares Destance and in Funders, Survey of Reclamation (1958), United Stares Casilogical Survey, Ouality of Wasee Bancol (1955), United Stares Destance of the Intrans, Survey of Reclamation (1958), United Stares Casilogical Survey, Ouality of Wasee Bancol (1958), United Stares Stares Casilogical Survey, Ouality of Wasee Bancol (1955), United Stares and Reclamation (1958), United Stares Destance of Manetal Stares Stares (LaDPH), Cup of Las Angeles, Department of Manetal Manetal Stares (LaDPH), Cup of Las Angeles, Department of Manetal Manetal Stares, Department of Public Health, Stares (LIDPH), Las Manetal Manetal Manetal Manetal Manetal Stares (LIDPH), Cup of Las Angeles, Department of Manetal Stares, Department of Public Health, Stares (LIDPH), Las Manetal Manetal Manetal Manetal Manetal Stares (LIDPH), Cup of Cup and Stares Caldina Organization (1958), United Stares Department of Public Health, LIDPH), Las Manetal Manetal Manetal Manetal Manetal Manetal Public Health, LIDPH), Las Manetal Line (Line Manetal Caldina Departmental Manetal Manetal Line (Line Manetal Manetal Manetal Line (Line La Caldina Departmental Manetal Manetal Line (Line Manetal Manetal Manetal Manetal Line Manetal Manetal Line (Line Manetal Manetal Manetal Line Manetal Manetal Manetal Line (Line Manetal Manetal Manetal Manetal Line Manetal Line Manetal Manetal Line Manetal M

TABLE D-2 ANALYSES OF SURFACE WATER

SOUTH BAY AQUEDUCT

				Specific	-				Minerol	Minerol constituents	nte in	equ	ports per million equivolents per million	ports per million volents per mill	llion			Totel			-		
Dote and time eampled	Elevation	Temp in of	Specific location of	Water Temp Specific conductore PH Elevation in PF location of (micromhoe PH	Calc	Calcium Magne-	me- Sodium	Poto m	Potos- Carban-	In - Bicar- bonate	- Sul -		- Ni-	Fluo-	Boron Silica		Other constituents	edived cont edived cod -	cent H	ordnese r CoCO3	Hordnese bid Caliform Anolyzed es CoCO3 119 MPN/mi by 3	A La La La La La La La La La La La La La	nolyzed by i
	(1000)				-	W)	(6	ŝ	⁰ C	(HC0		-+	-	(F)	101	I	1	HOG U	-To 00	ppm ppm		+	
									_			_	_	_					_				
						_		LI)	VERMORE	LIVERMORE CANAL AT PATTERSON RESERVOIR (STA. 214)	F PATTER	SON RES.	ERVOIR ((STA. 21	(1)								
10-28-63 1620			Reservoir	563							41 0,85,	85						325		132			DWR
12-2-63 1300			Reservoir	547		2.	2.56c				$\frac{44}{0*92}$	2.23				S C C	As=U.00 Cu=0.00 2n=0.00	304	1	128			
1-6-64 1520	708,8		Cana1	515		2	2.10c				$\frac{45}{1.27}$	79						270	1	105			_
2-3-64 1645			Reservoir	528	_	2	2.26c				51 1,06	79						282		113			
3-2-64 1600	707.5		Reservoir	613		2.	2.70c				64 1,33	92 2+60				A8	A8S=0,0	333		135			
4-1-64 1600	706.0		Reservoir	652		2.	2.96c				67 1,39	98 2.76						360		148			
5-1-64 1250			Reservoir	618		3,6	3.02c				$\frac{67}{1_*39}$	90 2.54						349		151			
6-1-64 1330	708.3		Reservoir	472		2**	2.46c				44 0+92	64 1.80						259		123			
7-1-64 1030	709*0		Canal	330			<u>1.78</u> c				26 0.54	37 1,04						186		68			
8-1-64 1415	708.2		Canal	376			1.76c				24 0.50	54 1.52						214		88			
9-1-64 1445	707.9		Canal	576		2.	2,18c	_			31 0,64	$\frac{104}{2*93}$						302		109			
a Field pH. b Laboratory pH.	Ha															1			-	-		1]

c Sum of calcium and magnesium in epm.

d for the comparison of the properties of the

e Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Determined by addition ut uttury.

) Gravimetric determination.

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Stores Public Health Service.

32505-0-H 6-61 200 SPO Mineral analyses made by United Stores Geological Survey. Duality of Water Branch (USGS); United Stores Department of the Interior, Sureeu of Reclamation (USBPR), United Stores Pakite Stores Department of Water
SUMMARY OF COLIFORM ANALYSES

Station	Station	Concernation of the local division of the lo	form MPN	
	Number	Maximum	Median	Minimum.
lorth Coastal Region (No. 1)				
ualala River, South Fork, near Annapolis	9a	2,400	3.0	0.2
lavarro River near Navarro	8Ъ	1,300	6.2	0.50
loyo River near Fort Bragg	10c	2,400	13	0.62
lussian River, East Fork, at Potter Valley Powerhouse	10a	50	2.3	0.62
ussian River at Guerneville	10	2,400	13	0.62
ussian River near Healdsburg	9	230	23	0.62
ussian River near Hopland	8a	620	23	2.3
an Francisco Bay Region (No. 2)				
lameda Creek near Niles	73	620	23	2.3
Coyote Creek near Madrone	82	620	23	0.62
os Gatos Creek near Los Gatos	74	230	6.2	0.23
Napa River near St. Helena	72	7,000	62	1.3
Central Coastal Region (No. 3)				
Carmel River at Robles del Rio	83	230	5.6	0.23
Nacimiento River near San Miguel	43Ъ	62	2.3	0.23
ajaro River near Chittenden	77	230	6.2	2.3
Salinas River near Bradley	43c	62	6.2	0.23
Salinas River at Paso Robles	43a	1,300	230	2.3
Salinas River near Spreckels	43	7,000	62	21
San Antonio River near Pleyto	43d	230	9.6	2.3
San Benito River near Bear Valley Fire Station	77a	230	6.2	0.62
San Lorenzo River at Big Trees near Felton	75	130	6.2	1.3
Soquel Creek at Soquel	76	62	22	2.3
Jvas Creek near Morgan Hill	96	230	5.4	0.13

TABLE D-4 Spectrographic analyses of surface water

	Zinc	(uZ)		<5.0	<5.7		5.7	5.7	6.7	5.7	5.7	<.0 </th <th><5.7</th> <th></th> <th>5.7</th> <th>.7</th> <th>.7</th> <th></th> <th> </th> <th></th>	<5.7		5.7	.7	.7		 	
		Z)			0						2					5.7	\$°.1	<i>.</i>	 	
	Vanodium	(^)		2.0	1.7		2.8	7.1	0*40	0.74	1.7	1.9	<0.29		2.9	4.6	1.3	* 		
	Titonium	(11)		<0* 50	<0.57		<0.57	<0.57	<0.57	<0.57	<0.57	<0,50	<0.57		<0, 57	<0.57	<0.57	/c*n>		
	Lend	(PP)		<1.2	<l.4< td=""><td></td><td><1.4</td><td><1.4</td><td>4°1></td><td><l.4< td=""><td><l.4< td=""><td><l.2< td=""><td><l.4< td=""><td></td><td><1.4</td><td><1.4</td><td>≤1.4</td><td>**T></td><td></td><td></td></l.4<></td></l.2<></td></l.4<></td></l.4<></td></l.4<>		<1.4	<1.4	4°1>	<l.4< td=""><td><l.4< td=""><td><l.2< td=""><td><l.4< td=""><td></td><td><1.4</td><td><1.4</td><td>≤1.4</td><td>**T></td><td></td><td></td></l.4<></td></l.2<></td></l.4<></td></l.4<>	<l.4< td=""><td><l.2< td=""><td><l.4< td=""><td></td><td><1.4</td><td><1.4</td><td>≤1.4</td><td>**T></td><td></td><td></td></l.4<></td></l.2<></td></l.4<>	<l.2< td=""><td><l.4< td=""><td></td><td><1.4</td><td><1.4</td><td>≤1.4</td><td>**T></td><td></td><td></td></l.4<></td></l.2<>	<l.4< td=""><td></td><td><1.4</td><td><1.4</td><td>≤1.4</td><td>**T></td><td></td><td></td></l.4<>		<1.4	<1.4	≤1.4	**T>		
	Nicket	(· N)		1.2	0,83		1.5	1.1	0.54	1.9	2.0	1.6	1.1		7.1	7.4	5.1) *r		
	Molyb-	(Mo)		≤0.25	≤0.29		1.4	1.7	0*69	≤0.29	1,1	≤0.25	≤0.29		1.9	4.3	9.7	2		
u o -	Manga.	nese (Mn)		<l.2< td=""><td><1.4</td><td></td><td><1.4</td><td><1.4</td><td><1.4</td><td><1.4</td><td><1.4</td><td><1.2</td><td><1.4</td><td></td><td><1.4</td><td><1.4</td><td>13</td><td>71</td><td></td><td></td></l.2<>	<1.4		<1.4	<1.4	<1.4	<1.4	<1.4	<1.2	<1.4		<1.4	<1.4	13	71		
s per billi	Germo	(Ge)		<0.25	<0.29		<0.29	<0.29	<0.29	<0.29	<0.29	<0.25	<0.29		<0.29	<0,29	<0.29	67*05		
Constituents in parts	Collium	(CD)		S.0	⊲5,7		⊲5,7	5.7	≤.7	5.7	€.7	€.0	S.7		<5.7	<.7	<5.7	ò		
shruents	hron	(Fe)		1.2	5.4		2.2	6.6	1.9	2.1	2.8	2.5	3.4		2,1	4.6	6.0	2	 	
CON	Copper	(cu)		<1.2	<1.4		<1.4	≤1.4	4.1=	<l.4< td=""><td>≤1.4</td><td>1.6</td><td><1.4</td><td></td><td>ş1.4</td><td><1.4</td><td>≤l.4</td><td>1</td><td> </td><td>_</td></l.4<>	≤1.4	1.6	<1.4		ş1.4	<1.4	≤l.4	1	 	_
		(Cr)		<1,2	<1.4		<1.4	<1.4	<1.4	<l.4< td=""><td><1.4</td><td><1.2</td><td><1.4</td><td></td><td><1.4</td><td><1.4</td><td><1.4</td><td></td><td> </td><td></td></l.4<>	<1.4	<1.2	<1.4		<1.4	<1.4	<1.4		 	
	Cobdit	(Co)		<1.2	<1.4		<1.4	<l.4< td=""><td><l.4< td=""><td>≤1.4</td><td><1.4</td><td><1,2</td><td><1.4</td><td></td><td>≤1.4</td><td><1,4</td><td><l.4< td=""><td>2</td><td></td><td></td></l.4<></td></l.4<></td></l.4<>	<l.4< td=""><td>≤1.4</td><td><1.4</td><td><1,2</td><td><1.4</td><td></td><td>≤1.4</td><td><1,4</td><td><l.4< td=""><td>2</td><td></td><td></td></l.4<></td></l.4<>	≤1.4	<1.4	<1,2	<1.4		≤1.4	<1,4	<l.4< td=""><td>2</td><td></td><td></td></l.4<>	2		
	Cadmium	(Cd)		<1,2	<1.4		<1.4	<1.4	4.1	<1.4	<1.4	<1.2	<1.4		<1.4	<1,4	<l.4< td=""><td>*</td><td></td><td></td></l.4<>	*		
	Bismuth	(B:)		<0.25	<0.29		<0,29	<0,29	<0.29	<0.29	<0.29	<0.25	<0,29		<0.29	<0.29	<0.29	67*07		
		(Be)		<0*50	<0.57		<0.57	<0.57	<0,57	<0.57	<0,57	<0,50	<0.57		<0.57	<0.57	<0.57			
		(IV)		s_1.2	3.7		≤1.4	7.7	<1.4	<1.4	11	≤1.2	3.4		6.6	8.3	<li.4< td=""><td>D *</td><td></td><td></td></li.4<>	D *		
	Date			5-14-64	9-4-64		5-5-64	9-2-64	5-4-64	5-7-64	9-4-64	5-12-64	9-2-64		5-7-64	9-4-64	5~7-64	1 2 1 1	 	
	Sto No			10 5	10 9		73 5	73 9	71 5	82 5	82 9	72 5	72 9		77 5	77 9	43 5	n 1 1		
	Station		NORTH COASTAL REGION (No. 1)	2	RUSSIAN RIVER AT GUERNEVILLE	SAN FRANCISCO BAY REGION (No. 2)	ALAMEDA CREEK NEAR NILES	ALAMEDA CREEK NEAR NILES	ARROYO DEL VALLE NEAR LIVERMORE	COYOTE CREEK NEAR MADRONE	COYOTE CREEK NEAR MADRONE	NAPA RIVER NEAR ST. HELENA	NAPA RIVER NEAR ST, HELENA	CENTRAL COASTAL REGION (No. 3)	PAJARO RIVER AT CHITTENDEN	PAJARO RIVER AT CHITTENDEN	SALINAS RIVER NEAR SPRECKELS	STITATUS NEL VEL SALA		

RADIOASSAYS OF SURFACE WATER

	STA.			PICO CURIES PER LITER	PER LITER	
STATION	.ON	DATE	DISS. ALPHA	SOLID ALPHA	DISS. BETA	SOLID BETA
REGION (NO. 1)						
BIG RIVER NEAR MOUTH	8c	5-15-64	5-15-64 -0.53 ± 0.26	0.68 ± 0.89	1.60 ± 11.15	0.88 ± 8.37
BIG RIVER NEAR MOUTH	8c	9-3-64	-0.70 ± 0.32	0.17 ± 0.91	9.53 ± 11.28	2.91 ± 7.91
GUALALA RIVER, SOUTH FORK NEAR ANNAPOLIS	9a	5-14-64	1.02 ± 1.39	-0.25 + 0.34	1.48 ± 11.34	-1.97 <u>+</u> 8.10
GUALALA RIVER, SOUTH FORK NEAR ANNAPOLIS	9a	9-4-64	0.32 ± 1.12	-0.29 + 0.61	-0.29 ± 0.61 -9.00 ± 11.10 -4.27 ± 7.61	-4.27 <u>+</u> 7.61
NAVARRO RIVER NEAR NAVARRO	8b	5-14-64	5-14-64 -0.13 ± 0.96	-0.33 ± 0.42	-0.33 <u>+</u> 0.42 4.68 <u>+</u> 11.41 -1.08 <u>+</u> 0.62	-1.08 ± 0.62
NAVARRO RIVER NEAR NAVARRO	8b	9-4-64	9-4-64 -0.96 ± 0.39	-0.12 <u>+</u> 0.72	-0.12 ± 0.72 -3.00 ± 11.09	6.70 ± 7.97
NOYO RIVER NEAR FORT BRAGG	10c	5-14-64	5-14-64 -0.32 ± 0.26	-0.33 ± 0.42	-0.33 <u>+</u> 0.42 6.71 <u>+</u> 9.66	3.87 ± 8.74
NOYO RIVER NEAR FORT BRAGG	10c	9-4-64	0.05 ± 0.97	0.14 ± 0.91	0.14 ± 0.91 -1.42 ± 10.79	2.90 ± 7.82
RUSSIAN RIVER, EAST FORK AT POTTER VALLEY POWERHOUSE	10a	5-12-64	-0.38 <u>+</u> 0.74	-0.03 + 0.59	-0.03 <u>+</u> 0.59 -2.61 <u>+</u> 11.12	-1.60 <u>+</u> 8.71
RUSSIAN RIVER, EAST FORK AT POTTER VALLEY POWERHOUSE	10a	9-2-64	0.70 ± 1.37	-0.43 <u>+</u> 0.46	-0.43 <u>+</u> 0.46 -8.06 <u>+</u> 9.47	-6.56 <u>+</u> 8.45
RUSSIAN RIVER AT GUERNEVILLE	10	5-14-64	-0.50 + 0.64	-0.33 ± 0.42	-0.33 <u>+</u> 0.42 -3.19 <u>+</u> 11.33	4.66 ± 8.89
RUSSIAN RIVER AT GUERNEVILLE	10	6-4-64	-0.32 ± 1.05	-0.12 ± 0.93	0.78 ± 11.31	-3.96 + 9.00
RUSSIAN RIVER NEAR HEALDSBURG	6	5-12-64	5-12-64 -1.07 ± 0.45	0.27 ± 0.84	0.75 ± 10.51	-7.65 ± 8.58

TABLE D-5 RADIOASSAYS OF SURFACE WATER

	STA.			PICO CURIES	PICO CURIES PER LITER	
STATION	NO	DATE	DISS. ALPHA	SOLID ALPHA	DISS, BETA	SOLID BETA
REGION (NO. 1)						
RUSSIAN RIVER NEAR HEALDSBURG	6	9-2-64	-1.23 ± 0.45	-0.81 ± 0.29	-0.81 <u>+</u> 0.29 -2.12 <u>+</u> 10.10 -3.80 <u>+</u> 7.60	-3.80 ± 7.60
RUSSIAN RIVER NEAR HOPLAND	8a	5-12-64	5-12-64 -0.33 ± 0.26	1.34 ± 1.10	4.10 ± 9.00	-1.54 ± 9.25
RUSSIAN RIVER NEAR HOPLAND	8a	9-2-64	9-2-64 -0.76 ± 0.76	-0.43 + 0.46	-0.43 ± 0.46 -1.60 ± 10.10	1.17 ± 8.71
REGION (NO. 2)						
ALAMEDA CREEK NEAR NILES	73	5-5-64	0.50 ± 1.01	1.19 ± 1.20	1.19 ± 1.20 14.67 ± 10.98 - 3.13 ± 10.17	-3.13 ± 10.17
ALAMEDA CREEK NEAR NILES	73	9-2-64	-1.77 ± 1.38	-0.57 ± 0.48	4.96 ± 13.14 -9.30 ± 7.84	-9.30 + 7.84
ARROYO DEL VALLE NEAR LIVERMORE	71	5-4-64	0.19 ± 1.41	-0.08 ± 0.61	0.19 ± 1.41 -0.08 ± 0.61 -11.89 ± 9.63 -4.60 ± 9.61	-4.60 + 9.61
COYOTE CREEK NEAR MADRONE	82	5-7-64	5-7-64 -0.18 ± 0.80	0.62 ± 1.00	0.62 ± 1.00 -3.64 ± 9.39	3.49 ± 9.81
COYOTE CREEK NEAR MADRONE	82	9-4-64	-0.81 ± 1.87	-0.25 ± 0.44	-0.25 <u>+</u> 0.44 -9.56 <u>+</u> 12.17 -2.88 <u>+</u> 8.63	-2.88 ± 8.63
LOS GATOS CREEK NEAR LOS CATOS	74	5-6-64	-0.85 ± 1.17	0.23 ± 0.65	0.23 ± 0.65 -1.56 ± 13.62	4.61 + 8.99
LOS GATOS CREEK NEAR LOS GATOS	74	9-3-64	0.40 ± 3.14	0.21 ± 0.81	<u>+</u> 0.81 -1.01 <u>+</u> 13.14	-5.38 + 9.05
NAPA RIVER NEAR ST. HELENA	72	5-12-64	5-12-64 -0.50 ± 0.27	0.23 ± 0.65 -0.01	-0.01 ± 12.11	9.72 ± 9.48
NAPA RIVER NEAR ST. HELENA	72	9-2-64	-0.40 + 0.88	0.20 ± 0.70	5.89 ± 12.46	9.42 ± 8.80

TABLE D-5 RADIOASSAYS OF SURFACE WATER

	STA.			PICO CURIES PER LITER	PER LITER	
STATION	NO	DATE	DISS. ALPHA	SOLID ALPHA	DISS. BETA	SOLID BETA
RECION (NO. 3)						
CARMEL RIVER AT ROBLES DEL RIO	83	5-7-64	-0.28 ± 0.55	-0.15 ± 0.56	1.44 ± 11.36 -1.68 ± 8.66	-1.68 + 8.66
NACIMIENTO RIVER NEAR SAN MIGUEL	43b	5-5-64	0.06 ± 1.07	0.22 ± 0.75 -4.31	-4.31 ± 11.53	-7.08 ± 8.45
NACIMIENTO RIVER NEAR SAN MIGUEL	43b	9-2-64	0.23 ± 1.13	-0.35 ± 0.45 10.27	+ 11.64	-0.77 ± 9.21
PAJARO RIVER NEAR CHITTENDEN	77	5-7-64	2.01 ± 4.66	-0.06 ± 0.50 12.37	12.37 ± 14.86	3.67 ± 8.38
PAJARO RIVER NEAR CHITTENDEN	77	9-4-64	9-4-64 -5.12 + 4.31	-0.07 ± 0.72	-0.07 <u>+</u> 0.72 -1.15 <u>+</u> 13.67 -5.83 <u>+</u> 8.58	-5.83 + 8.58
SALINAS RIVER NEAR BRADLEY	43c	5-5-64	5-5-64 -0.12 ± 0.97	0.22 ± 0.76	0.22 ± 0.76 9.35 ± 11.66	1.73 ± 8.84
SALINAS RIVER NEAR BRADLEY	43c	9-2-64	9-2-64 -0.40 <u>+</u> 1.06	0.24 ± 0.81	0.24 ± 0.81 -1.85 ± 10.45 -3.88 ± 8.69	-3.88 + 8.69
SALINAS RIVER NEAR SPRECKELS	43	5-7-64	-0.35 + 5.49	-0.21 ± 0.68	$-0.21 \pm 0.68 - 0.84 \pm 16.03$	6.74 <u>+</u> 9.01
SALINAS RIVER NEAR SPRECKELS	43	9-4-64	-0.91	0.74 ± 0.97 28.00	28.00 ± 14.41	<u>+</u> 14.41 -0.44 <u>+</u> 2.55
SAN ANTONIO RIVER NEAR PLEYTO	43d	5-5-64	-0.16 ± 1.09	-0.15 ± 0.55 1.80	1.80 ± 11.03	-1.81 ± 8.57
SAN BENITO RIVER NEAR BEAR VALLEY FIRE STATION	77a	5-5-64	1.65 ± 5.62	-0.15 ± 0.56	-0.15 <u>+</u> 0.56 14.74 <u>+</u> 16.16	7.51 ± 9.02
SAN BENITO RIVER NEAR BEAR VALLEY FIRE STATION	77а	9-2-64	-4.61 ± 8.24	-0.05 ± 0.59	-0.05 ± 0.59 26.01 ± 33.22 -3.17 ± 8.62	-3.17 + 8.62
SAN LORENZO RIVER AT BIG TREES NEAR FELTON	75	5-6-64	0.41 ± 1.14	$0.41 \pm 1.14 - 0.52 \pm 0.22$	6.57 <u>+</u> 12.64	0.97 ± 8.74

TABLE D-5 RADIOASSAYS OF SURFACE WATER

	SOLID BETA		0 + 8,43	+ + 8.52	5 + 8.38	5 ± 10.64	7 ± 7.77	
~	+		0.27 -1.80	3.58 -4.14	2.87 -10.05	0.39 10.05	1.75 -4.77	
PER LITE	DISS. BETA		-3.18 + 1	0.48 ± 1	-9.98 ± 13	1.37 ± 10	-9.91 + 1	
PICO CURIES PER LITER	SOLID ALPHA		$0.33 \pm 0.84 - 3.18 \pm 10.27 - 1.80 \pm 8.43$	-0.34 <u>+</u> 0.46 0.48 <u>+</u> 13.58 -4.14 <u>+</u> 8.52	-0.46 <u>+</u> 0.46 -9.98 <u>+</u> 12.87 -10.05 <u>+</u> 8.38	0.21 ± 0.75 1.37 ± 10.39 10.05 ± 10.64	-0.57 ± 0.48 -9.91 ± 11.75 -4.77 ± 7.77	
	DISS. ALPHA		0.15 ± 1.02	5-6-64 -0.16 ± 1.80	2.60 ± 3.94	0.51 ± 1.12	9-4-64 -0.41 ± 1.33	
	DATE		9-3-64	5-6-64	9-3-64	5-7-64	9-4-64	
STA.	.ON		75	76	76	96	96	
	N	0.3)	: BIG TREES	TEL	III	AN HILL	AN HILL	
	STATION	REGION (NO. 3)	SAN LORENZO RIVER AT BIG TREES NEAR FELTON	SOQUEL CREEK AT SOQUEL	soquer creek at soquer	UVAS CREEK NEAR MORGAN HILL	UVAS CREEK NEAR MORGAN HILL	

DESCRIP	TION	OF			TY Wate			ION	STAT	ION			
STATION	Miles from Golden Gote	In	ime tervol (b)					LOC	ATION				
	(0)	Hour	s Min										
Crockett - Søn Pøblo Bøy	27,7	3	30					south sho finery Co			t of Card	uinez Br	idge
Martinez - Carquinez Strait	33.1	3	50	Sampl	ed from	Shell Oil Dany rail	Company	dock, al	pout 0,6	mile dow	nstream i	from Sout	hern
Port Chicago - Sulaun 8ay	41.0	4	20	South		f Suisun		. S. Navi	1 ammuni	tion loa	ding what	f below	
Middle Point - Suisun Bay	41,5	4	30	South		f Suisun	Bay at A	11ied Che	emical Pl	aut lota	ke, about	0,5 mil	e
Pitteburg - Suiaun Bay	48.0	5	00					shore, at	: Pittsbu	irg Yacht	Narbor.		
Spoonbill Creek - Suisun Bay	48.9	s	05	At Sa	cramento	Northern	n Railros	d crossis	ng.				
Collinsville - Sacramento River	50.8	5	25	Sacra	mento Ri	ver, nort	h bank a	t junctio	on with S	San Joaqu	in River.		
MAXIMUM OBS					AT er mill			D D wate		A ST	ATIO	NS	
STATION	L					١	NATER	YEAF	2				
	19	1931 1938 1939 1944 c 1952 1955 1956 d 1958 1959 1962 1963 1964								1964			
Socromento — Son Jooquin Delto Sy: Unimpoired Runoff in Percent of Averoge (e)	tem	35	191	50	63	171	64	178	169	67	93	132	63
Crockett						13200	16600	15300	11900	15000	13900	13100	14600
Martinez	10	5900	11600	16400		8900	11900	11900	7150	10200	12700	11500	12900
Port Chicago						6900	12500	9750	5830	15640	9370	9200	10700
Middle Point***													10100
Pitteburg						1200	7800	3440	1200	5110	3980	1350	3280
Spoonbill Creek**	1	3900	2560	11800	7300	2800	6400	4040	930	6270	3540	2940	2980
Collineville	1:	2600	860	10400	4700	783	3880	2280	550	5430	2430	1980	3730

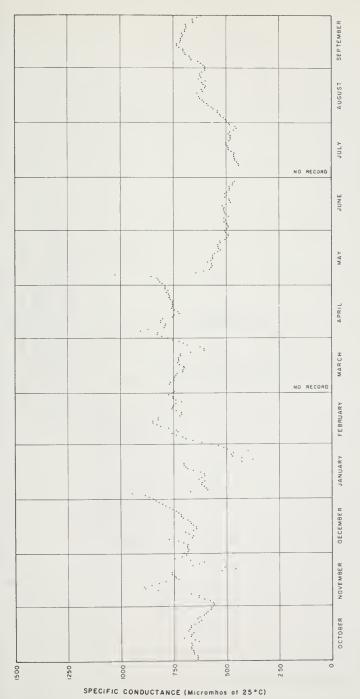
Ocean water contains oppositiontely 18,200 parts per million of chiorise.
 *** Station discontinued December 1963.
 *** Station initiated January 1964.
 Mileoge measured to extint along main channel. For stations off the main channel, the mileage shown is the same distance along the main channel to a point whereon the time of the occurrence of the tidal phase is the same schat of the observation station.
 Time interval between high tida et colden case and time for taking amples at station.
 Releases of stored water from Shate Lake commenced in 1954.
 Release of stored water from Shame Reservoir commenced in 1955.
 Average taken as mean emual unimpaired flow at foothill stations of major tributaries for 50-year period October 1910 through September 1960.

SALINITY OBSERVATIONS AT BAY AND DELTA STATIONS* In parts of chloride per million parts of water

				DAT	'E			
STATION	10-2-63	10-6-63	10-10-63	10-14-63	10-18-63	10-22-63	10-26-63	10-30-63
Crockett Martinee Port Chicago Pitteburg Spoon Bill Creek Collingville	11200 5880 4510 bd233 e657 a230	8820 1960 480 230	a7160 6180 e235 e569 a76	10400 7740 3950 169 407 82	9800 7840 2740 e41	9220 65280 3380 a142 a25	8040 6860 2940 471 220 e20	10400 7350 4020 116 419 87
STATION				DAT	E			
	11-2-63	11-6-63	11-10-63	11-14-63	11-18-63	11-22-63	11-26-63	11-30-63
Ctockett Mattime Pott Chicego Pitteburg Spoon Bill Cteek Collinsville	11300 10700 5490 485 336	#7840 2980 167	6760 ee4410 2160 bd88 36	10000 7840 108 27	7450 6220 1810 45 22	4510 e4120 470 e31 15	5980 6670 1470	7600 6130 1950 26
STATION				DAT	E			
	12-2-63	12-6-63	12-10-63	12-14-63	12-18-63	12-22-63	12-26-63	12-30-63
Crockett Martinse Port Chicago Pittabutg Spoon 8111 Creak Collingville	6860 3870 45 11	5490 4260 529 31	7450 4070 3240 28 14	7400 2840 2720 13	7500 6810 #12	6180 4750 1790 41	ee7200 4510 19	5930 3530 59 37
STATION				DAT	E			
STATION	1-2-64	1-6-64	1-10-64	1-14-64	1-18-64	1-22-64	1-26-64	1-30-64
Crockett Narfines Port Glicego Nidóle Point Pittébus Collingville	4800 3280 1400 72 e21	7650 3280 2350 56 34	8480 3870 32240 52 23	7940 3680 bd74 113	6180 3040 30	3430 2060 1520 94 28	5200 6030 451 38 14	4610 1470 ebd64 58 30 15

* Smmplea taken at four-day intervals approximately one and oue-half hours after high high tida.
 a Taken after low bigb tide.
 d Taken over one hour off scheduled time.
 b Taken on preceding day.
 e Teken two days later.
 f Taken two days eatler.

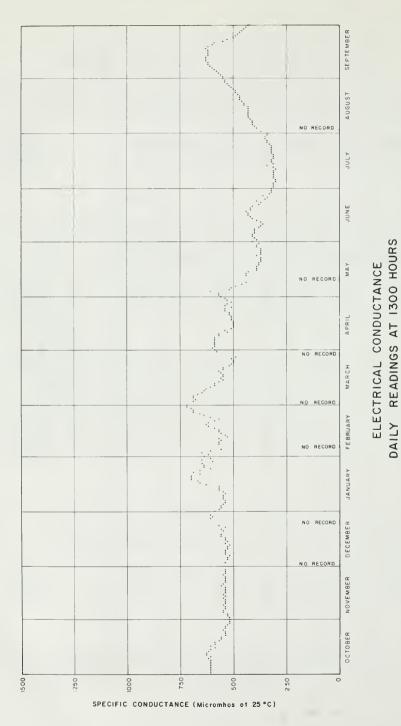
			P0	on perio				_
STATION				DA:	TE			
	2-2-64	2=6=64	2-10-64	2=14=64	2-18-64	2-22-64	2-26-64	2=30=64
Grockett Martices Port Chicagn Middle Polat Pittaburg Collinsville	3870 52 34 44 16	6320 4460 868 515 41 24	7400 d2110 3580 2940 19	7200 6620 2010 1720 45 20	6080 4850 882 #181 45 18	8040 bd3190 3580 46 29	2200 2550 bd68 19	
STATION	_			DAT	TE			
	3-2-64	3~6-64	3-10-64	3-14-64	3-18-64	3-22-64	3-26-64	3-30-64
Crockett Martimer Port Chicago Middle Polat Pittsburg Collinsville	8630 5100 2110 1620 a77 42	7650 6370 2400 1370 24	9610 7450 4460 3870 bd111 75	9800 7740 3630 2790	10800 8140 5240 4900 #174 372	10000 se7260 6180 bd343 274	9220 6370 2740 bd216 176	10100 «6270 3920 1720 abd189 198
STATION	-			DAT	38			
	4-2-64	4-6-64	4=10-64	4-14-64	4=18-64	4-22-64	4=26=64	4-30-64
Crockett Martines Port Chicago Hiddle Point Pittaburg Collinaville	9410 7650 3820 2990 sbd74 179	7840 5780 2500 1720 152 34	10800 8240 a3770 3480 a122 a39	8430 6860 6080 5640 a255 a113	10300 10200 7200 618 613	10700 9020 bd6270 4800 a622 a672	11400 9410 6570 5340 a706	11600 9410 6760 45830 #672 1410
STATION				DAT	е			
oranion	5-2-64	5-6-64	5-10-64	5-14-64	5-18-64	5-22-64	5-26-64	5-30-64
Crockett Martinez Port Chicago Middle Polat Pitteburg Collimsville	10900 9100 1040 1120	e10400 9300 5050 e720 a539	11800 9610 6370 5740 #470 #539	12600 9900 ed7990 6670 e529 1540	11000 #8430 #b44560 #564 #470	11600 9020 5540 a2110 e333 e211	10700 10200 6760 5440 #397 #326	€7840 5200 3920


SALINITY OBSERVATIONS AT BAY AND DELTA STATIONS* In parts of chloride per million parts of water

* Samples taken at four-day intervals approximataly one and one-half hours after high high tide. • Taken after low high tide. • Taken over one hour off scheduled time. • Taken tow days later. • Taken two days asrlisr.

SALINITY OBSERVATIONS AT BAY AND DELTA STATIONS* In parts of chloride per million parts of water

STATION				DA1	TE			
5141104	6-2-64	6=6=64	6-10-64	6-14-64	6-18-64	6-22-64	6-26-64	6-30-64
Grockett Martiner Port Chicego Middle Point Pittaburg Collingville	8490 b3240 a356 a333	12000 10600 647170 5460 #393 #394	11800 10400 3530 abd853 e755	ed6370 5690 ebd774 1050	e11600 e7690 6340 2400 æ510 æ404	10900 9330 7600 3940 e577 a510	13400 ed9420 9120 d2280 æ1560	11200 10300 5480 1840
STATION		<u></u>		DA1	TE	L	<u>.</u>	
STATION	7-2-64	7-6-64	7-10-64	7-14-64	7-18-64	7-22-64	7-26-64	7-30-64
Crockett Martiner Port Chiergo Middle Point Pitteburg Collinsville	12300 e8670 7400 5350 abd1400 al160	#12000 10300 8020 8560 #1500	13500 12200 9810 8480	13200 011700 8060 7040 1650 02750	e13800 £9380 8620 £1780 £1850	14000 e9250 9980 8520 e2360	14600 10200 9000 #2220	13800 9250 8170 2340 #2890
STATION				DA1	re			
	8-2-64	8-6+64	8-10-64	8-14-64	8-18-64	8-22-64	8-26-64	8-30-64
Crockett Martiner Port Chicego Middle Point Pittaburg Collingville	€14100 €9620 €2270 #2250	14100 12900 e7710 d7630 w2570	9960 9580 8900 3280 3730	#14100 e10100 10600 #750 #2570 #2410	e14200 s10200 10000 6540	12200 ed10700 9410 #2550	13200 11400 7670 bd2160	#9820 11200 10100 #d1960
		1			TE	I	<u> </u>	
STATION	9-2-64	9-6-64	9-10-64	9-14-64	9-18-64	9-22-64	9-26-64	9-30-64
Crockert Martiner Port Chicego Middle Point Pittaburg Collingville	el1900 s6130 8440 6300 abd1290	13000 10700 9050 8100 #1570	10800 9260 6130 5090 e830 1040	9840 #6180 4390 #684 #334	11600 #8780 6910 43080 #425 #392	11400 #7640 5890 4230 #340	12700 #7380 7560 6290 #687 #697	e9990 e8600 e6120 #412


Samples takes of four-day intervels spproximately one and one-half hours after high high tide.
 a Taken ofter low high tide.
 d Taken over one hour off scheduled time.
 b Taken on following day.
 e Taken on praceding day.
 c Taken two days later.
 f Taken two days earlier.

-175-

FIGURE D-2

-176-

1964

BETHANY FOREBAY AT SOUTH BAY PUMPING PLANT (STA 207) APPENDIX E

GROUND WATER QUALITY

ACKNOWLEDGMENTS

The Department of Water Resources gratefully acknowledges the assistance and contributions of the many public agencies, private organizations, and individuals whose cooperation greatly facilitated the preparation of this appendix. Special mention is made of the following agencies:

State

California Department of Public Health California Disaster Office

Local

Alameda County Flood Control and Water Conservation District Alameda County Water District Mendocino County Monterey County Flood Control and Water Conservation District Santa Clara Valley Water Conservation District Sonoma County Flood Control and Water Conservation District

INTRODUCTION

Data presented in this appendix are measured values of selected quality characteristics of ground water samples collected in the Central Coastal Area during the period from July 1, 1963, through June 30, 1964. It consists of a table showing results of analyses of ground water and a table showing results of radioassay of ground water. Wells and ground water basins are numbered in accordance with the system described in Appendix C. The data are presented in water pollution control board region, ground water basin and well number order.

Analyses of Ground Water

Tabulated values for dissolved minerals are the analytical quantity reported in parts per million (ppm) and a computed value for equivalents per million (epm). Electrical conductivity is reported as micromhos at 25°C and water temperature is reported in degrees Fahrenheit. Values for temperature are those measured in the field at the time of sampling. Laboratory analyses of ground water were performed by the Department of Water Resources and the United States Geological Survey, all in accordance with "Standard Methods for the Examination of Water and Waste Water", 11th Edition, or with U. S. Geologica Survey Water Supply Paper 1454, "Methods for Collection and Analyses of Water Samples". The methods yield comparable accuracy. Heavy metal concentrations were determined by "wet" analyses.

Table E-1 presents analyses of ground water. Definitions of abbreviations used in this table are as follows:

TDS---Total dissolved solids by gravimetric determination at 180°C
 T.O.--Odor.

-180-

- 3. ABS---Alkyl benzene sulfonate.
- 4. DWR---Department of Water Resources.
- 5. USGS--United States Geological Survey.

Radioassay of Ground Water

Radioassay of ground water are presented in Table E-2. Determinations were made by the California Disaster Office and the Department of Public Health of suspended alpha and beta activities and dissolved alpha and beta activities in some samples and for gross activity in other samples. The samples through December 1963 were analyzed by the California Disaster Office. Samples taken after this time were analyzed by the Department of Public Health. Negative values of measured activity in some analyses reported by the Department of Public Health resulted when activity at the time of sampling was less than during the five-day background period.

Results are expressed as pico curies per liter (pc/1). The term pico curies is also written micro-micro curies and is further defined as 10-¹² curies. The most probable error is reported along with the measured value. Results should be considered qualitative and undue emphasis should not be given to quantitative values.

		Stote welt			Specific conduct-					Miner	al con	Mineral constituents	Ē	por	parts per milllan equivolents per million	million			Totol	į	Hordness		
Model Model <t< th=""><th>Owner ond use</th><th>number and other number</th><th>Dote somplad</th><th>Tamp in • F</th><th>ance (micro- mhos at 25° C)</th><th></th><th>icen h</th><th></th><th>(Na)</th><th>(K) (C</th><th>orbon-B ofe br</th><th></th><th>Sul - fote SO₄)</th><th></th><th>NI- trate NO₃) (F</th><th>10- Bor</th><th></th><th>02) 02) Other constituents</th><th>alved solved solids in ppm</th><th>T DE</th><th>as Cal Tatol Ppm</th><th></th><th>Anolyzed by</th></t<>	Owner ond use	number and other number	Dote somplad	Tamp in • F	ance (micro- mhos at 25° C)		icen h		(Na)	(K) (C	orbon-B ofe br		Sul - fote SO ₄)		NI- trate NO ₃) (F	10- Bor		02) 02) Other constituents	alved solved solids in ppm	T DE	as Cal Tatol Ppm		Anolyzed by
Total Total Control C						-	-	2	DRTH COA	STAL RE													
		MDBGM							UKLAH	VALLEY		5											
	G. C. Gilley domestic	14N/12W-5K1	9-63		565									6.6 0.19			8						DWR
	L. Johnson domestic	14N/12W-11N1	9-63										15 <u>), 31</u>	8.8 0.25	24 0.39		.2		156		121	31	DWR
N. 138/124-2181 9-53 236 8.0 $\frac{7}{1.05}$ $\frac{10}{1.05}$	M. Mehtonen domeatic	14N/12W-26K1	9-63		353									14 0.39			9						DWR
$I3N/I24.21M$ $$ 243 $$ 243 $$ 243 $$ 243 $$ $$ 0.05 <td>City of Uklah municipal</td> <td>15N/12W-16E1</td> <td>9-63</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>12 0.25</td> <td>7.8 0.22</td> <td>1.2 0.02</td> <td></td> <td>.2</td> <td></td> <td>156</td> <td></td> <td>125</td> <td>5</td> <td>DWR</td>	City of Uklah municipal	15N/12W-16E1	9-63										12 0.25	7.8 0.22	1.2 0.02		.2		156		125	5	DWR
ISN/IZW-3D1 9-63 426 1 1 2 1 2 0	Regina Water Co. municipal	15N/12W-21H1	9-63		243									<u>3.9</u> 0.11		01	9.0			_			DWR
IeW/124-501 9-53 8-0 131 113 135 0.0 135 0.0 </td <td>D. Broggi domestic and trrigation</td> <td>15N/12W-35D1</td> <td>9-63</td> <td></td> <td>426</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>21 0.59</td> <td></td> <td>01</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>DWR</td>	D. Broggi domestic and trrigation	15N/12W-35D1	9-63		426									21 0.59		01	1						DWR
IgN/134-901 9-53 4/2 1 4/2 1 6.9 0.1 0.1 0.1 INV/134-18M1 9-63 1970 7.35 0.35 0.3 0.3 0.1 0.1 0.1 INV/134-18M1 9-63 197 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.1 0.1 INV/134-28M1 9-63 197 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.1 0.1 INV/134-28M1 9-63 197 0.3	F. Brown domeatic	16N/12W-5D1	9-63				23						2.1 0.04	$\frac{25}{0_*70}$	0.2 0.00		°.		188		133	0	DWR
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	P. G. & E. domestic and industrial	16N/12H-9Q1	9-63		422									6,9 0,19			1						DWR
$ [1 N 1 1 4 - 281] \ \ \ \ \ \ \ \ \ \ \ \ \$	J. E. Nelaon domestic	17N/12W-18A1	9-63		1970									491 13,85		w1	88						DWR
12N/114-2F1 9-63 387 387 387 388 300 310 51.6 0.2 13N/114-701 9-63 334 8.0 21 34 9.2 0.6 0 105 10 5.4 0.2 13N/114-701 9-63 334 8.0 21 3.4 0.6 0.6 0.5 0.5 0.6 13N/114-181 9-63 364 1.05 0.06 0.01 0.01 0.01 0.01 13N/114-1801 9-63 364 1.05 0.06 0.01 0.01 0.01 13N/114-1801 9-63 213 0.01 0.01 0.01 0.01 13N/114-1801 9-63 213 0.01 0.02 0.02 0.01	Harry Matthews domestic	17N/12W-28M1	9-63								0*00		13 0.27	7.8 0.22	0.13	0,	<u>1</u>		128		77	15	DWR
12N/114-261 9-63 397 397 9 13 14 14 14 14 14 14 14									SANEL	VALLE	9	<u>(</u>										•	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	A. DeMarcantonio domestic	12N/114-2F1	9-63		387									4.9 D.14			0.2						DWR
m 13K/114-1861 9-63 364 8.8 9.5 9.5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E. F. Hawn irrigation	13N/11W-7D1	9-63				21 1,05	$\frac{24}{2*01}$				_	10 0,21	5.4 0.15	0.01		0.3		162		153	1	DWR
13N/114-1601 9-63 215 3-9	A. Damiano irrigstion	13N/11W-1881	9-63		364									8.8 0.25	9.5		1.4						DWR
	J. H. Pomroy Co. irrigation	13N/11W-1801	9-63		215									3.9 0.11			0.4						DWR

	Analyzed by		o <u>c</u>	œ			of.	~	P6	e:	<u>م</u>	#			~	2	<u>₩</u>
	+	 		DWR			OWR	DWR	DWR		DWR	DWR			DWR	DA'R	DWR
Hardness	N.C.			22				•	14	0	0	=			°	0	•
	- T - T			179				122	170		165	20			87	en	292
<u>.</u>	ds spd	 		210 12			416 94	179 19	202 10	229 10	298 24	138 38			316 81	294 98	474 31
Ţġ.	salved solids in ppm			~~~~~			4	1	5	5	5				m	5	4
	Silica (SiO ₂) Other constituente																
		 					83	36	25	20	82	38			20	29	38
Ian	Baran (B)		0.2	0.3			0.4	0.0	0.4	0.3	4.2	0.1			0.3	1.5	0.2
million ber mil	Flua- rids (F)						0.05	0.01	0,1	$\frac{0,1}{0,01}$	$\frac{0,1}{0,01}$	0,1			0.2	$\frac{1.2}{0.06}$	0.2 0.01
parts per million valents per mill	Ni- trats (NO ₃)			9.5			1.0 0.02	5,0 0,08	5.6 0.09	$\frac{1.4}{0.02}$	0,9	25			0.0	0.0	0.21
parts per millian equivalents per millian	Chio- ride (CI)		<u>3.9</u> 0.11	7.8 0.22			<u>38</u> 1+07	9.0 0.25	<u>6.5</u> 0.18	7.5 0.21	$\frac{18}{0+51}$	<u>18</u> 0.51			<u>31</u> 0,86	$\frac{33}{0,94}$	<u>59</u> 1,65
E	Sul - fote (SO ₄)			16 0,40			$\frac{1,0}{0,02}$	$\frac{5 \cdot 0}{0 \cdot 10}$	13 0.27	12 0.25	9 <u>0</u>	3.0			23 0.48	0,5	2 <u>3</u> 0.47
Mineral constifuents in	Bicar- banate (HCO ₃)	(Cont.)		3,13	1	(1-1/)	270	$\frac{154}{2.52}$	<u>170</u> 2.79	<u>222</u> 3.64	<u>206</u> <u>3,38</u>	47 0.77	181-17		<u>229</u> 3.75	$\frac{156}{2.57}$	<u>360</u> 5.90
eral co	Carbon- ate (CO ₃)	(1-16)		0*00		TLEY	22 0.73	0.00	10 0,33	$\frac{2}{0_{*}07}$	5 0.17	0,00	DOCA UALTEW	****	3.0	$\frac{21}{0,70}$	0.0
ž	Patos - Carbon (sium ate t (K) (CO ₃) ((LLEY		0.03		ALEXADDER VALLEY	4.0	0.8	0.8	$\frac{1.0}{0.03}$	1.5 0.04	$\frac{1,6}{0,04}$	vu Ca	UNYON	$\frac{1.2}{0.03}$	$\frac{1.1}{0.03}$	<u>1.2</u> 0.03
	Sodium (Na)	SANEL VALLEY		10 0.44		ALEXAD	132 5.74	13	8.5 0.37	9.8 0.43	24 1,04	15 0.65	CANTA T	CALICIT	99 4 • 30	98 4.27	61 2,65
	- engone muis (QM)			25 2.03		_	1.0 0.08	<u>19</u> 1,59	$\frac{22}{1,85}$	18 1.46	$\frac{21}{1,75}$	<u>6.3</u> 0.52			5.5 0.45	0.00	<u>38</u> 3.10
	Calcium (Ca)			<u>31</u> 1.55			3.6 0.18	17 0.85	<u>31</u> 1.55	$\frac{44}{2,20}$	<u>31</u> 1.55	9.6 0.48			$\frac{10}{0,51}$	$\frac{1.4}{0.07}$	53 2.64
	F			8.0			8.8	7.7	8.6	8,3	8.4	8, 1			8.3	8.8	7.2
Specific	ance (micro- mhos at 25° C)		310	394			586	272	32.9	366	379	178			495	420	760
	Temp In °F																
	Date sampled		9-63	9-63			9-19-63	9-19-63	9-19-63	9-19-63	9-19-63	9-19-63			9-24-63	9-24-63	9-24-63
Stote well	number and ather number	MDB6M	13N/11W-19N1	1H0E-M11/NE1			107-W8/N9	9N/9W-1P1	10N/9W-18P	11N/LOW-28N1	1V/10M-33A1	11N/10W-33G1			5N/9W-3F1	6N/7W-17E1	6N/7W-18RL
	Owner and use		Hopland Public Ucilicy District municipal	Grace Ranch irrigation, domestic and stock			Redwood Hereford Ranch irrigation and domestic	Henry Olck Irrigation		Italian Swiss Colony irrigation and domestic	Swiss Colony Winery industrial and domestic	C. Pellegrini domestic			Roland Matteri irrigation	George L. Crane irrigation	John J. Wilson domestic and atock

	Analyzed by			H	ei.	Ĕ	N.	OWR	OWR	DWR	DWR	OWR	DWR	OWR	DWR
			DWR	0 048	OWR	0 DWR	0 DWR	0		0		0	0	е 	
Irdness	as CaCO ₃ Total N.C PPm PPm		36						6 52		9 136		87	08	3 21
			148			2 72	3 26	1 82	6 176	1 207	8 269	1 112			283
E I	dis- solved sod- solids jum in ppm jum		246 22	234 54		200 42	112 48	174 31	320 26	524 51	538 28	238 41	149 40	206 33	333
° ۲															
	Silica (SiO ₂) Other constituents														
	Silica (SiO ₂)		35	55		20	740	48	74	44	62	42	61	84	37
lion	Baron (B)		0.0	0.0	0*0	0.0	0.1	0.1	0*0	0.2	0,3	0.1	0.0	0.0	1-0
ber mi	Fluo- ride (F)		$\frac{0,1}{0,01}$	0.01		0.2	0.1	0.2	0.01	0.01	0.01	0.2	0.3	0.02	0.02
parts per million equivalents per million	Ni- trote (NO ₃)		$\frac{13}{0,21}$	0.0		0.00	$\frac{2.7}{0.04}$	0.4	36 0,58	0.00	80 1.29	0.00	1.2 0.02	4.4	0.27
polivo	Chlo- ride (CI)		$\frac{44}{1.22}$	$\frac{37}{1*05}$		<u>5 • 3</u> 0 • 15	$\frac{7 \cdot 1}{0 \cdot 20}$	$\frac{11}{0.30}$	50 1.41	$\frac{60}{1,70}$	$\frac{104}{2.93}$	17 0.47	14 0.39	$\frac{26}{0_*73}$	10 0.28
s in	Sul - fate (SO ₄)		$\frac{1,0}{0,02}$	$\frac{3 \cdot 0}{0 \cdot 06}$		0.5	$\frac{16}{0,34}$	$\frac{1.9}{0.04}$	$\frac{7*0}{0*15}$	$\frac{1.5}{0_*32}$	<u>17</u> 0.35	0°00 0°00	$\frac{11}{0,23}$	5.0 0.10	<u>17</u> 0.35
Mineral constituents	Bicar- bonate (HCO ₃)	(1-18)	137 2.25	$\frac{117}{1.92}$		147 2.42	38 0,62	$\frac{131}{2,15}$	<u>151</u> 2.47	$\frac{391}{6.42}$	162	<u>3.28</u>	60 0,98	$\frac{90}{1*48}$	298 4.88
eral co	arbon- are (CO 3)	VALLEY	0.00	0*0		0.0	0.00	0,000	0,00	0.00	0,00	0,00	0*00	$\frac{2}{0.07}$	11 0.37
Ň	Potas - Carbon- sium ate (K) (CO ₃)	ROSA VA	1,6 0,04	1.7 0.04		$\frac{4*2}{0*11}$	$\frac{3.1}{0.08}$	$\frac{1.7}{0.04}$	4.8 0.12	$\frac{2 \cdot 2}{0 \cdot 06}$	<u>2.7</u> 0.07	$\frac{1,4}{0,04}$	$\frac{1,2}{0,03}$	$\frac{2.5}{0.06}$	0 <u>0</u> 0
	Sodium (Na)	SANTA	19 0.83	39		25 1.10	$\frac{13}{0,55}$	$\frac{17}{0_*74}$	29 1.26	$\frac{102}{4 \cdot 43}$	48 2+09	$\frac{37}{1,60}$	<u>15</u> 0, 65	$\frac{19}{0,83}$	0 <u>,57</u>
	Magne - sium (Mg)		1.57	7.5 0.62		7.5 0.62	$\frac{2_{*}4}{0_{*}20}$	9.6 0.79	2 <u>8</u> 2 <u>2</u> 7	$\frac{29}{2.41}$	39 3.23	$\frac{13}{1.06}$	$\frac{1.9}{0.16}$	$\frac{13}{1,05}$	51 4.21
	Catcium (Ca)		$\frac{31}{1_*38}$	15 0+76		16 0.82	6.4 0.32	$\frac{17}{0_*84}$	$\frac{25}{1 + 25}$	$\frac{35}{1,73}$	43 2.15	$\frac{23}{1,17}$	16 0.80	11 0.55	29 1.45
	H		8*0	7.2		7.4	7.5	7.7	7.4	7.9	9.9	8.2	8.1	8.4	°.
Specific conduct-	ance (micro- mhos at 25° C)		375	300	326	255	117	230	481	750	766	360	161	241	539
	Temp In °F														
	Oats sompled		9=24=63	9-24-63	9-25-63	9=25=63	9-25-63	9-25-63	9-19-03	9-25-63	9-20-63	9-25-63	9-20-63	9-19-63	9-19-63
State well	number and ather number	MDB6M	6N/8W-381	6N/8W-35A2	6N/9W-2G1	7N/7W-15C1	7N/7W-23B	7N/7W~29D1	7N/8W-5G1	7N/8W-18Q1	7N/8W-30P1	7N/8W-33M1	1.46-M6/NL	8N/9W-2301	9N/10W-1C1
	Owner and use		Miss G. Mallory domestic	Cotati Public Utility District municipal	City of Sebastopol Water Department municipal	Dr. Dudley S. Moore irrigation and domestic	Oakmount Builders irrigation	Earl F. Bethards irrigation	C. Bordessa domestic	Harry Rasmussen irrigation	C. Dotti irrigation and stock	A. Marx domestic and irrigation	C. W. Cilbert domestic	Redwood Ranch, Inc. irrigation	Frei Bros, Winery domestic and industriel

TABLE E-1 ANALYSES OF GROUND WATER

ON GROOM	1964
L13C3	

	A.Idlyzed by			OWR	DWR	OWR	DUR	0WR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWK	DWR	DRR
Hardness	N.C DDm									_			128				0		
													266				406		
	Ta sod												416 18				850 34		
10	solved solids in ppm												41				20		
	Silica (SiO ₂) Other constituents ^c																		
	n Silica (SiO ₂)			61	<u>ຕ</u>]	<u></u>	ent	~1					0*0		0.6	1.8	1.7	2.6	2.6
nillion	Baron (B)			0.2	0.3	0.3	0.3	0.2					ୗ		-0 	-1		12.	
equivalents per million	Ni- trate (NO ₃) (F)												65 1.05				22 0.35		
equivale	Chlo- ride (CI)			142 4.00	$\frac{140}{3,95}$	1070 30,18	1120 31.60	$\frac{331}{9_*34}$	<u>329</u> 9,28	17 0.48	26 0.73	$\frac{52}{1,47}$	<u>52</u> <u>1.47</u>	75 2.12		$\frac{444}{1.24}$	49 1.38	901 25.42	948 26,74
Ē	Sul - fote (SO ₄)						1						52 1.08				32 0.67		
Mineral constituents in	Bicar- bonote (HCO ₃) (((NO. 2)	(1)										168				622 10.19		
al cons	Carbon- B ate bc (CO ₃) (H	RECION	PETALUMA VALLEY (2-1)										0,00				0.00		
Miner	Potas - Carbon - B sium ate b (K) (CO ₃) (F	CO BAY	JMA VAL										0.01				0.7 0.02		
	Sadium (Na)	SAN FRANCISCO BAY RECEDN (NO.	PETAL		220 9.57		329 14,31		<u>312</u> 13,57				26 1,13				97 4.22		726 31,58
		SAN							1				42 3.46				23 1.87		
	Calcium Magna- (Ca) (Mg)												37				125 6.24		
	PH												6.7				7*9		
Specific conduct-				1300	1320	4130	4250	1880	1930	175	344	640	672	685	687	1150	1120	4010	4240
0, 0	Temp Temp														_				
	Date sampled			9-63	4=4=64	9-63	4-4-64	9-63	4-4-64	9-20-63	4-17-64	9-20-63	4-17-64	9-20-63	4-17-64	9=63	4-4-64	9-63	4-4-64
State well	number and ather number		MD864M	3N/6W-1Q1		3N/6W-3C1		3N/6W-11B1		3N/6W-15M1		3N/6W-18M1		3N/7W-14F1		1HZ-M9/N7		4N/6W-7H2	
	Owner and use			Mrs. H. Clokie domestic and stock		0. White and	irrigation	S. K. Herzog Co.,	domestic and stock	C, Strozzi stock		Rupprecht Annearic irriantion	and stack	Karl Johnson Annustic		Lopes		Lopes	

	Analyzed		DAR	DAR	DWR	DWR	DWR	DWR	DM3	DWR	TWR -	DWR	DIVR	DWR	DMR	OWR	DWR	OWR
550						e		1508								0		395
Hardness	as CaC Ppm ppm					194		1910 1								124		573
- Jac	red Sod					15		30 1								53		58
Tatal	solids bevids bilds nin ppm					235		3430								314		1040
	Silica (SiO ₂) Other constituents																	
	Silica (SiO ₂)																	
Ilion	Boron (B)		0.9	1.0	0.1	0,1	0.2	0.2	0*0	0*6	0.8	0.4	0.0		0.0	0.1	0*0	0.0
parts per millan equivalents per million	Fluo- ride (F)																	
arts pe alents	Ni- trate (NO ₃)					2.0 0.03		1.8 0.03								0,00		118 1.90
d	Chio- ride (Ct)		<u>200</u> 5.64	$\frac{111}{3,13}$	$\frac{23}{0,65}$	2 <u>3</u> 0.65	1650	1670 47.11	7440 209,88	9280 261,79	$\frac{60}{1.69}$	<u>115</u> 3.24	154	$\frac{147}{4.15}$	$\frac{39}{1*10}$	$\frac{42}{1\star18}$	368 10,38	<u>343</u> 9.68
ç	Sul - fote (SO ₄)					3.6 0.07		0*00	101	101						<u>30</u> 0.62		38 0.79
Mineral constituents in	1	(Cant.)				233 3.82		490 8.03								$\frac{221}{3+62}$		3.56
al cons	Potas- Carbon- sium ate banate (K) (CO ₃) (HCO ₃)	(2-1)				0,00		0,00								00.00		0*00
Miner	ium (Ca	VALLEY				2.0 0.05		17 0.04								2.1 0.05		2 • 1 0 • 05
	Sodtum (Na)	ETALUNA VI		192 8.35		16 0.70		<u>384</u> 16.70								66 2.87		104 4.52
		LET.		~ 100		30 2.43		304 304 3								9.5 0.78		31 2.57
	Calcium Magne - (Ca) (Mg)					29 1.45		263 33 13.12 25								34 9 1.70 0		178 8.88 2
	PH Cal					7.7		7.6 20								8.2		8*0 8
Specific conduct-			957	066	544	644	5670	5590 7	19400	22700	825	983	922	895	247	540 8	1780	1680 8
S S	Temp In °F (r																	
	Date sampled		9-63	4-4-64	9-63	4-4-64	9-63	4-4-64	9-63	4-4-64	9-63	4-4-64	9-63	4-4-64	9-63	4-4-64	9-63	4-4-64
State well	number and ather number	NOBGM	4N/6W-21Q1		4N/6W-27R1		4N/6W-33R1		4N/7W-2D1		5N/6W-30D1		5N/7W-8D3		5N/7W-19Al		5N/7W-20L3	
	Owner and use		L. A. Bourke damestic and stock		S. K. Herzog Cu., Sleepy Hollow Dairy	stock	0. White irrigation and stock		Union Oil Co. induscrial		G. Myles domestic and stock		N. J. Matzen domestic		Oberg Lumber Co. domestic		Al's Barber Shop domestic	

Analyzed by DWK DWR DuR DWE DWR SMIR DWIK DWL Hardness as CaCO ₃ Total N.C ppm ppm $4_{4}4_{4}$ Tatal Per-dis- cent solved sod-soligs tum 476 66 184 Silica (SiO₂) Other constituents 0.1 0.2 Baran (B) ports per million equivalents per million Flug-ride (F) Ni-trote (NO₃) 18 0.2 0.19 1.71 67 1.89 135 97 98 2.76 27 0.76 27 0.76 89 3.38 157 3,16 66 1.86 42 44 Chlo-31 Sul -fate (SO₄) 19 Ē Mineral constituents (2-1) (Cont.) Polas - Carbon- Bicar-sium ate bonate (K) (CO₃) (HCO₃) 365 (2-2.01) 1.5 0.00 0.04 0.00 15 1964 VALLEY ETALUMA VALLEY NAPA Sadium (No) 41 1.78 192 8.35 Magne -s:um (Mg) 3.8 (Calcium (Ca) 8.6 0.43 3.8 0.19 6.7 Ħ 8.7 Specific conduct-Tamp ance in "F (micro-mhas at 2.5" C) 748 744 882 080 810 293 855 860 626 656 Date sampied 9=17=63 9-17-63 4-14-64 9-17-63 4-13-64 4-14-64 4=14=64 9-16-63 4-4-64 9-63 9-63 State well number and other number 4N/4W-12M1 3N/3W-18G1 3N/3W-18C2 5N/7W-34E2 5N/7W-35K1 4N/4W-7A1 MDB6M P. Rogers domestic and stock Napa County Airport domestic Dr. H. E. Clark
damestic, stock,
and irrigation Donald L. Pickens domestic Owner and use Prees Wireless dumeatic Mr. L. P. Nunn domestic R. II. Sartori irrigation T. Raven domestic N. Rhodes domestic

DGR DWR DWR DWR

2.99

4-13-64

DWR

ANALYSES OF GROUND WATER

T-I ITANT

	Analyzad by r		DAR	DWR	DWR	DAR	DWR	DWR	DMR	DWR	New	DWR	DWR	DWR	DWR	DWR	DMR	DIVR
Hardness	N.C.		297									0						0
	1 1		479			98						83						122
Per	ten sod		0 48									182 31						0 86
Tato	als- solids solids in ppm		1190									18						1190
	Silica (SiO ₂) Other constituents ^d																	
	Silica (SiO ₂		-									01		-1			~	91
llion	Baron (B)	_	0.3			0.1			2.0	2.1		0*0		0.1			0.5	0*0
equivalents per million	Fluo- (F)	_			_													
valants per mill	NI- trate (NO ₃)		25 0.4									1.1						0, 01
inbə	Chia- ride (CI)		295 8.32	324 9.14	340	8.2 0.23	43 1+21	$\frac{44}{1.24}$	103 2.90	102	18 0,51	20 0.56	35	$\frac{31}{0,87}$	146 4.12	81 2.28	416	395 11.14
ls in	Sul - fate (SO ₄)	2	265									$\frac{6_{*}1}{0_{*}13}$						92 1,92
Minaral constituents in	Polas - Carbon Bicar- sium ate banote (K) (CO ₃) (HCO ₃)	(Cont.)	<u>221</u> 3.62					,				$\frac{1.06}{1.74}$						340
aral ca	arbon- ate (CO ₃)	2-2.01	0,00									0.00						00.00
WIN	Potas- C sium (K)		1.3 0.03									$\frac{2 \cdot 3}{0 \cdot 06}$						6.2 0.16
	Sadium (Na)	NAPA VALAEY	<u>202</u> 8,79			$\frac{7.7}{0.33}$						18 0,78						371 16,14
1	Magne- muis (Mg)	24]	<u>34</u> <u>2.76</u>									$\frac{12}{0,96}$						11 0.89
ľ	Calcium M (Ca)		136 6.79	-								$\frac{14}{0*70}$						<u>31</u> 1.55
	H		_									7.1						7.2
Specific conduct-	ance (micra- mhos at 25° G		1870 7.5	1580	1630	225	513	520	7.04	726	243	249	421	414	865	630	2260	2010
5 0	Temp n • F																	
	Date sampied		4-13-64	9-17-63	4-13-64	4-14-64	9-17-63	4-14-64	9-17-63	4-14-64	9=17-03	4-14-64	9-17-63	4-14-64	6-17-63	4=14-64	9-17-63	4-14-64
State wall	number and ather number	MDBGM	48/40-1361	4N/4W-14C2		4N/4W-25K1	5N/4W-9Q2		5N/4W-11F3		5N/4W-14C1		5N/4W-15E1		5N/4W-20R2		5N/4W-21P2	
	Ownar and use		G. Jawrence domestic and stock	Vernon Bassham domestic		H. Mini domestic	M. L. George domestic		Silverado Motel domestic		J. W. Davis domestic and stuck		John Healy domestic and	irrigation	F. D. Looney domestic		J. G. Carr domestic	

THDUE E-I

	Anolyzed by		DWR	DWR	DMR	DWR	DMR		DWR	DWR	DWR	DWR	DWR	DAR	DWR	DWR	DWR	DWR
	N.C.						17			0				0	_			
Hardness	as Ca Tatat Ppm						207			66				06				
ď	teo E						13	_		85				200		_		
Total	- sib bevlos sb.los mdd ui						260			619				322				
	Silica (SiO ₂) Other constituents																	
	Silica (SiO ₂)																	
u II ion	Boron (B)			0*0	0*0	0.4	0.3		0.1	0.1	<u>2. 4</u>	2.4	0.7	0.8	4.5	3.7	0.8	0.7
r millic	Flug- ride (F)																	
parts per millian valents per mill	NI - trate (NO ₃)						$\frac{17}{0.27}$			0.9				$\frac{11}{0_{*}18}$				
parts per millian equivalents per millian	Chia- ride (CI)		<u>165</u> 4.65	$\frac{36}{1,02}$	$\frac{34}{0,96}$	19 0,54	9 <u>8</u>		$\frac{122}{3.44}$	122 3.44	629 17,74	<u>587</u> 16, 56	$\frac{22}{0,62}$	$\frac{23}{0,65}$	61 1.72	95 2.68	$\frac{20}{0,56}$	$\frac{21}{0_*59}$
Ē	Sul - fate (SO ₄)						50 1.04			47 0,98				8.6 0.18				
Mineral canstituents in	Polas- Carbon- Bicor- sium ate bonote (K) (CO ₃) (HCO ₃)	(Cont,)					$\frac{2.02}{3 * 31}$	(2-2.02)		283 4.64				$\frac{2.09}{3.42}$				
ral ca	arbon- ate CO ₃) (2-2.01)					0.00			6 0.20				0,00				
Min	sium (K) ($\frac{2*9}{0*07}$	SONGMA VALLEY		3.6 0.09				2.0 0.05	_			
	Sodium F	NAPA VALLEY					15 0.65	SONOR		182 7.92				<u>59</u> 2,57				
	- eube	221					26 2.10			10 0,82				13 1.10				
	Calcium Magne- (Ca) (Mg)						41 2.04			10 0+50				14 0.70				
-	DH Ca						6.8			8.6				7.7				
pecific onduct-	ance (micro- mhos at 25° C)		846	428	429	532	460		1260	659	2860	2780	435	195	206	1120	\$05	405
S C	Temp in °F 0																	
	Oate sampled		4-13-64	9-11-63	4-15-64	9-18-63	4~14=64		9-63	$b_1 = b_1 = b_1 b_1$	9-63	4-4-64	9-63	4-4-64	9-63	$l_0 = l_0 = f_1 l_0$	9-63	4-4-64
State well	nµmber and ather number	MDB6M	5N/4W-23C2	5N/4W-29H1		7N/5W-5A6			4N/5W-14D2		4N/5W-32B1		5N/5W-18D2		5N/5W-20R1		5N/6W-12F1	
	Owner and use		Napo State Hospital domestic and irrigation	J. Flanagan domestic		Wm. Wheeler domestic and stock			U. S. Navy municipal		Sonoma Ranch stock		J. Firmingar domestic		1,. Miglioretta domestic		E. L. Smith domestic and stock	

	Anglyzed by c		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR		DWR	OWR
Hordness	N.C PPm							0			0				0			
	1 1							68			27				51			
Par -	s sod-							64			33				83			
Tota	olis - solved solids in ppm							355			96				579			
	Silica Other constitu ints ^d (SiO ₂)																	
	Silico (SiO ₂											01	01	01	oll			ml
on illion	Boron (B)		0*0	0.0	0.1	0.1	1.4	1.4	2+0	1.9	0*0	0*0	0.0	12	12		1.1	7.8
parts per million equivalents per million	Fluo* (F)																	
oarts p	Ni- trate (NO ₃)							0.6			1.4 0.02				1.0 0.02			
equiv	Chlo- ride (CI)		24 0.68	$\frac{31}{0,87}$	$\frac{66}{1,86}$	69 1.95	$\frac{82}{2*31}$	$\frac{82}{2.31}$	<u>53</u> 1.50	<u>52</u> 1.47	6.8 0.19	5.4 0.15	4.0 0.11	183	<u>179</u> 5.05		$\frac{259}{7*31}$	<u>186</u> 5.25
. <u>e</u>	Sul - fate (SO ₄)	~						2.8 0.06			$\frac{7.1}{0.15}$				0.8 0.02	a		
Mineral constituents		(2-2.02) (Cont.)						$\frac{140}{2.29}$			34				183 3.00	Y (2-5		
al con	Potos - Carbon-Bicor- sium (K) (CO ₃) (HCO ₃)	-2.02)						0.00			0*00				0.00	VALLE		
Miner	otos - Ca sium (K) ((13 0,33			0.05				0.31 0	IRFIELO		
	Sodium P.	SONOMA VALLEY						69 3.00			6.6 0.29				154 6.70	SUISUN-FAIRFIELD VALLEY (2-3)		
	Calcium Magne- (Co) (Mg)	A						8.0 0.66			3.4 0.28				4 <u>.5</u> 0.37			
	(Co)							14 0.70			5.2 0.26				13 0.65			
	Hd							8.2			6.7				7.3			
Specific conduct-	ance (micro- mhos at 25° C)		342	361	508	515	521	512	438	435	06	138	134	935	928		1420	1770
	Temp in °F																	
	Date sampled		9-63	4-4-64	9-63	4-4-64	9-63	4-4-64	9-63	4-4-64	4-15-64	9-18-63	4~16-64	9-18-63	4-16-64		9-12-63	9-12-63
Stote well	number and other number	MDB661	5N/6W-24K1		5N/6W-25P1		6N/6W-23M2		6N/6W-26E1		7N/4W-30L1	9N/6W-31Q1		9N/7W-25N1			3N/1E-4B1	3N/1E-2101
	Owner and use		M. Kiser irrigation		Connolly domestic		N. Tarvid domestic		0. Stamoe domestic		A. G. Faglani domestic	J. Alcouffe domestic		R. H. Archerd domeatic			Mre. Taylor domestic	McDougal Livestock Co. stock

۰		
£.		
5		
-1		
J		
Ť		
2		
7		
Ċ.		
3		
7		

	State well		S	Specific conduct-					Miner	ol cons	Minerol constituents	Ē.	equivalents per million	valents per mill	millio	6		Totol	200	Hordn	955	
Owner and use	number and other number	Oote Te sompled in	Temp in °F (I	ance pH (mlcro- pH mhos of 25° C)	H (Calcium	- angne sium (Mg)		Sodium Po (No)	Potos-Carbon- sium ofe (K) (CO ₃) (ote bc 03) (H	Bicar-S bonate f (HCO ₃) (1	Sul - fote (SO ₄)	Chio- ride (CI)	NI- FI trote (NO ₃) (Fluo- ride (F)	Boron Silice (B) (Si O	Silico (SiO ₂) Other constituen.s ^c	dis- solved solids in ppm	sod-i-	as CoCO ₃ Totol N.C. Ppm ppm		Anaiyzed by
	NDBGM						-NNS INS	SUI SUN-FAIRFLELD VALLEY	T.D VALL		(2-3) (Cont.)	nt.)										
McDougal Livestock Co. domestic	3N/1E-22F2	9-12-63		1910									<u>324</u> 9.14		31	4.0			_			DWR
		5-12-64		1870 8.3	3 32 1.60	0 3,02	14.44 12 14.44		2.3 1.	0.03	512 8.39 1.	78 1,62	291 8.21	50 0.81	61	3.9		1070	76	231	0	OWR
Cuy Stewart domestic	4N/1E-8F1	9-12-63		966				_					160		01	0.98						DWR
		5-12-64		1010 7.9	9 46	10 2.06		125 5.44 0	<u>3.5</u> 0.09	0.00	244 4.00 1.	<u>59</u> 1.23	155 4.37	$\frac{10}{0,16}$	UT.	0.8		604	55	218	18	DWR
Fish and Came Comm. domestic	4N/1W-33A1	9-12-63		3620								121	853 24,06			51						DWR
		5=12-64		3710								121	853 24.06		01	<u>6*6</u>						DWR
W. F. Healy domestic	4N/2W-401	9-12-63		1400									$\frac{80}{2.26}$			1.4						DWR
		5-12-64		1410				_					71 2,00			1.2						DWR
Southern Pacific Railroad	4N/2W-5Q2	9-12-63		378									42 1.18			0,51						DWR
domestic		5-12-64		381								-	39 1,10			0.5						DWR
	4N/2W-9H1	9-12-63		3360 8.5	5 94 4+69	4 81 69 6.63		510 22,18	2.5 0.06	$\frac{14}{0,47}$ $\frac{3}{6}$	394 <u>3</u> 6.46 <u>0</u>	3.0 0.06	910 00	6.4 01.0	0.2	4.9 24		1900	66	566	220	USGS
F. P. Smith domestic	4N/2W-18M1	9-12-63		1140									<u>115</u> 3.24		01	0.75						DWR
		5-12-64		1160									105 2,96			0.6						0WR
D, R. Mangels lrrigation	4N/3W-13G2	5-12-64		1080 7.7	7 94 4,69	4 36 69 2.98		94 4*09	<u>1.2</u> 0.03	00*0	415 1 6,80 2	124 2.58	2.17	1, 3 0, 02		0.7		652	35	384	44	DWR
	5N/1W-25R1	5-12-64		1490 8.	8.0	$\frac{90}{4_*49}$ $\frac{32}{2.66}$		163 7.09	1.0 0.02	0*00	250 4.10	12 0.25	<u>335</u> 9.45	11 0,18	- 1	0.6		808	50	358	153	DWR
	5N/2W-21P3	5-12-64		1040									<u>52</u> 1.47			1.2						DWR
																			_			

	pez																
	Anolyzed by		DWR	OWR	DWR	DWR		DWR	OWR	DWR		USGS	USGS	USGS	USGS	USGS	USGS
Hordness	N.C. 3			0				678	192	130		777	130	72	2	28	73
				354				924	456	413		290	376	444	196	104	340
Per -	t cont			30				49	44	44		18	2 34	2 24	9 52	2 39	2 43
Tota	solved solved in ppm			535				2200	1050	872		387	632	642	429	212	692
	Silica (SiO ₂) Other constituents											anl	01	81	33	11	33
) (Silo		91	6	m 1	9		9	5	0.4		0.3 28	0.4 39	0.5	0.3	0.1	0.4
lon nillion	Boron (B)		<u>1.6</u>	0.9	2.3	2.6		0.6	0,5	<u>。</u>						0.00	
parts per millon equivalents per million	Fluo- fe ride 3) (F)								Im	100		3 0.01	2 0 <u>.0</u> 2	7 0.01	3 0.02		5 0 <u>01</u>
parts	Ní- trote (NO ₃)			30 0.48				1.9 0.03	$\frac{2 \cdot 1}{0 \cdot 03}$	39 0.63		7.9	. 26 0.42	<u>17</u> 0.27	14	2.1 0.03	28 0.45
nbe	Chlo- ride (CI)		45 1+27	$\frac{44}{1.24}$	184 5,19	$\frac{44}{1.24}$		650 18,34	3.38	216 6.09		24 0,68	175 4,94	<u>55</u> 1+55	3.13	40 1.13	137 3.92
e s	Sul - fate (SO4)	(Cont.)		<u>38</u> 0,79				$\frac{621}{12,93}$	<u>386</u> 8.04	112 2+33		61 1.27	<u>36</u> 0,75	104	51 1.06	39 0.81	97 2.02
Minerol constituents	Bicor- bonote (HCO ₃)	(2-3)(458 7.51			(2-4)	<u>300</u> 4 • 92	<u>322</u> 5,28	<u>345</u> 5.65	(2-5)	<u>300</u> 4.92	<u>276</u> 4,52	$\frac{414}{6*79}$	215	93	<u>326</u> 5 . 34
arol co	Corbon- ote (CO 3)			0.00	_			0.00	00.00	0.00	TLEY	0*00	12 0.40	2.0 0.67	8 0.27	00.00	0,00
MIN	Potas-Carbon- 1 sium ate t (K) (CO ₃) (ELD VA		0.6			PITTSBURG PLAIN	0.31	7.44 0.19	4.5 0.12	CLAYTON VALLEY	<u>1.3</u> 0.03	0.03	1.0 0.03	1.6 0.04	$\frac{2 \cdot 2}{0 \cdot 06}$	1.1 0.03
	Sodium (Na)	SUISUN-FAIRFLELD VALLEY		71 3.09			LLIA	412 17,92	<u>172</u> 7.48	<u>154</u> 6.70	CLA	30 1,30	90 3.92	64 2.78	99 4.31	$\frac{32}{1,39}$	<u>116</u> 5.05
	Magne- sium (Mg)	SUIS		40 3.28				123 10,13	57 4+67	58 4.81		40	49 4 , 03	58 4.79	2.22	4.6 0.38	42 3,46
	Calcium (Co)			76 3.79				167 8,33	89 4.44	69 3.44		51 2.54	$\frac{70}{3,49}$	82 4+09	34	$\frac{34}{1,70}$	67 3+34
	H			8.0		-		8.2	8.2	8.0		7.5	8.4	8.5	8.5	8.2	7.7
Specific conduct-	ance (micro- mhos at 25° C)		914	922	1890	1370		3550	1550	1480		645	1120	666	815	355	1160
	Temp In °F							69	69	67							
	Date sampled		9-12-63	5-12-64	9-12-63	9-12-63		6-24-64	6-24-64	6-24-64		8-13-63	8-13-63	8-13-63	8-13-63	8-13-63	8-13-63
Stpte well	number and ather number	MDBGM	5N/2W-27J4		5N/2M-34N1	5N/2W-34P4		2N/1E-7R2	2N/1E-22C1	2N/2E-20A1		1N/1W-4A1	1N/1W-4R1	2N/1W-30J1	2N/2W-13P1	2N/2W-26B1	2N/2W-36J1
	Owner and use		H. J. Beck domostic		C. M. Bailard domestic	Low Sing domestic		Continental Can Co. 1rrigation	Dow Chemical domestic	Fibreboard Products, Inc. domestic		G. Curletto domestic and irrigation	S. H. Cowell Foundation	Fred Baker domestic	R. B. Ogilvie domestic	Mr. Bertinoia domestic	J. D. Nailen domestic

	σ											
	Analyzed by		USGS		USGS	DWR	USGS	USGS	USGS	USGS		
ess	N.C. 3		232		122	0	81	0	808	228		
Hardness	as Ca(Tatal ppm		598		550	358	580	258	1280	695		
Der -	sod		52		47	77	33	70	32	26		-
Total	solved solids in ppm		1570		1180	715	955	982	2330	1140		
	Silica Other constituents (SiO2)											
	Silica (SiO ₂)		26		$\frac{21}{21}$	38	31	777	36	29		
	Boron (B)		0.9		0.9	1.2	1.4	6.2	1.2	0.5	_	
1111 120	Fluo- ride (F)		0.5	0,03	0.9	0.44 0.02	0.4 0.02	0 <u>, 2</u> 0, 01	0.4 0.02	0.01		
SILIBIC	NI- F trate (NO ₃)		18	0,29	18 0,29	0, 9 0, 01	36 0+58	3.4	<u>133</u> 2.15	17 0.27		
equivalents per million	Chla- ride (CI)		2.08	5.87	244 6.88	$\frac{143}{4.03}$	<u>150</u> 4.23	279	578 16,31	<u>279</u> 7,87		
	Sul - fote (SO ₄)		535	11.14	218 4.54	<u>32</u> 0, 67	$\frac{116}{2.42}$	$\frac{26}{0*54}$	424 8.83	51 1,06		
	Bicor- bonate (HCO ₃)		0-2)	7.31 1	486 7.97	<u>506</u> 8.29	609 9*98	490 8,03	<u>576</u> 9.44	<u>558</u> 9.15		
	Carban- ate (CO ₃)			0.00	$\frac{18}{0,60}$	0.00	0*00	$\frac{18}{0\bullet60}$	0,00	6 0,20		
	Potos - Carban- sium ate (K) (CO3)		TURACIU VALLET	0.05	<u>1,3</u> 0,03	3.0	0.7	<u>3.9</u> 0.10	<u>1, 3</u> 0, 03	<u>1.7</u> 0.04		
	Sodium (Na)	, and the second s	298	12.96	226 9.83	<u>133</u> 5,78	<u>133</u> 5.78	$\frac{276}{12*01}$	272 11,83	113 4.92		
	Calcium Magne- (Ca) (Mg)		73	6.02	64 5.26	<u>35</u> 2.86	73 6,00	34 2.81	164 13.52	$\frac{86}{7.11}$		
	Calcium (Ca)		119	5.94	115	86 4,29	<u>112</u> 5,59	47 2,35	240 11,98	<u>136</u> 6,79		
	F		7.8	}	8.5	8,1	8,0	8,5	7.4	8.3		
conduct-	ance (micra- mhas at 25° C)		2240		1890	1240	1590	1660	3360	1750		
	Temp in °F											
	Date sampled		8-13-63		8-13-63	8-13-63	8-13-63	8-13-63	8-13-63	8-13-63		
weil	number and ather number						-13P1	2N/2W-27R1	2N/2W-36El	2N/2W-36E2		
State well	ather number		MDB6M	HT / MT	1N/1W-2961	1N/2W-11NI	1N/2W-13P1	2N/2W	2N/2W	2N/26		
	Owner and use		Cohoor Land	A. Sepastient domestic	G. Landie domestic	Cheater Hook domestic	John E. Wells domestic and lrrigation	F. H. Dunhem domestic	Mrs. A. Buscaglia domestic			

	Analyz~d by		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DVrR	DWR	DWR	DWR	DWR	DWR	DkR	DWR
				0				0	86 	а 	0	0 9	0	0	101 D	0 D	135 D
Hardness	al N.C.		5 227		4 310	4 48	0 1305				9	2	101	124		517 11	471 13
	sod- tum Tatal ppm		505	8 198	3 494	4 254	8 1500	1 163	23 345	41 186	58 162	54 204	45 10	67 12	32 363	25 51	27 43
<u>a</u> 2	eolved so solids so in ppm iu		879 29	540 58	1120 43	506 44	2800 28	364 51	506 2	345 4	464 5	511 5	243 4	425 6	611 3	753 2	734 2
2°					1		17										
	Silica (SiO ₂) Other constituents																
																101	(a)
Ilian	Boran (B)		0.1	0.2	0.4	0.4	0.4	0.4	0.3	0.4	0.3	0*3	0.1	0.4	0.3	0.5	0.3
per mi	Flua- ride (F)																
parts per millan equivalents per millian	Ni- trate (NO ₃)		$\frac{24}{0_*39}$	8.8	$\frac{21}{0*34}$	0.4	$\frac{2.4}{0.04}$	0.8 0.01	64 1.03	2 <u>.3</u> 0.04	1.0 0.02	1.3 0.02	0 <u>,5</u> 0 <u>01</u>	0.9	55 0.89	51 0.82	42 0.68
equivo	Chio- ride (CI)	_	200 5,64	161	446 12,58	138 3,89	1260 35.54	<u>27</u> 0.76	40 1.13	$\frac{27}{0,76}$	<u>87</u> 2.45	$\frac{153}{4*32}$	$\frac{37}{1.04}$	99 2.79	81 2.28	78 2.20	$\frac{129}{3 * 64}$
ei s	Sul - fote (SO ₄)	Y (2-9)	99 2.06	$\frac{27}{0*56}$	32 0.67	45 0.94	128 2.66	36 0.75	$\frac{68}{1*42}$	25 0.52	<u>33</u> 0.69	23 0.48	4*4 0.09	40	96 2+00	$\frac{116}{2 \cdot 42}$	$\frac{86}{1,79}$
Mineral canstituents	Bicar- bonote (HCO ₃)	OF SANTA CLARA VALLEY	<u>339</u> 5.56	251 4.11	$\frac{212}{3*47}$	251 4.11	238 3,90	<u>315</u> 5.16	<u>316</u> 5.18	<u>289</u> 4.74	288 4.72	<u>241</u> <u>3.95</u>	155 2*54	234	319	485	410 6.72
eral co	Carbon- ate (CO ₃)	CA CLAF	12 0.40	8.5 0.28	6 0,20	00.00	0*00	0*00	0*00	6.9 0.23	0*00	0.00	2 0.07	5 0.17	0.00	0.00	0.00
Min	Polas-Carbon- sium ate t (K) (CO ₃) (JF SANT	1.1 0.03	$\frac{2 \cdot 2}{0 \cdot 06}$	2.4 0.06	$\frac{2 \cdot 3}{0 \cdot 06}$	$\frac{8,2}{0,21}$	3.4 0.09	0.4 0.01	$\frac{1.2}{0.03}$	$\frac{1,7}{0,04}$	$\frac{1_*7}{0_*04}$	2.0 0.05	2.4 0.06	2.4 0.06	1.0 0.02	$\frac{1_{*}2}{0_{*}03}$
	Sodium (Na)	BAY AREA (97 4+22	125 5.44	$\frac{172}{7,48}$	$\frac{91}{3*96}$	268 11.66	81 3.52	48 2.09	61 2.65	106 4.61	110 4.78	$\frac{39}{1,70}$	118 5.13	78 3.39	80 3.48	79 3.44
	- angna suurs (pM)	EAST B	65 5,35	29 2.36	5 <u>3</u> 4.33	25 2.08	148	19 1,56	$\frac{41}{3*40}$	22 1.82	19 1,59	25 2.08	$\frac{12}{1.02}$	$\frac{14}{1,18}$	$\frac{41}{3_*36}$	<u>51</u> <u>4.19</u>	44 3.62
	Colcium (Ca)		95 4.74	$\frac{32}{1,60}$	<u>111</u> 5.54	60 2.99	357	<u>34</u> 1.70	70 3.49	38 1+90	<u>33</u> 1,65	40 2,00	$\frac{20}{1,00}$	26 1.30	78 <u>3,89</u>	$\frac{123}{6.14}$	<u>116</u> 5.79
	Hd		8.5	8.5	8.4	8,3	7.8	8.1	7.3	8.5	7.6	7.8	8.4	8.4	8.0	7.6	° 3
Spacific	ance (micro- mhos at 25° C)		1360	993	1780	921	4210	635	844	586	062	913	389	761	1000	1230	1190
	dre r					67		65	67						65	74	66
	Date sampled		6-3-64	6-3-64	6-3-64	6-19-64	6-3-64	6-19-64	6-19-64	6-19-64	6-3-64	6-3-64	6-3-64	6-3-64	6-19-64	6-30-64	6-19-64
State wall	number and ather number	MDB644	1S/4W-4A1	1S/4W-34F2	2S/3W-8Q1	2S/3W-28G1	2S/3W-30D2	2S/3W-33H3	2S/3W-34A2	2S/34-34D3	2S/4W-3E1	2S/4W-3F1	2S/4W=12R1	2S/4W-25A1	3S/2W-7J1	3S/2W-8N2	3S/2W-19R4
	Owner and use		Manasse Block Tanning Company industrial	Red Star Yeast Co. industrial	National Lead Co. industrial	A. Ratto irrigotion	Soarea irrigation	Hohener Facking Co. domestic and industial	Ralph A. Zobel irrigatian	John A. Jacklich domestic	Alameda Naval Air Station irrigation	Todd Shipyarda industrial	Alameda High School irrigation	Ratto irrigatian	Bayaide Nuraery irrigation	Hoffman domestic	Kruger and Sons industrial

WATER	
GROUND	V S
ЧО	1001
ANALYSES	

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Specific conduct- once	Specific canduct- Temp ance	Specific conduct- once					Mine	Mine	lore	Mineral canstituents in	ants in		parts per million equivalents per million	per millan	1	-		Tatal dis-	Per - cant	Hardness os CoCO ₃	
2-9 (1004.1.1) 1 <t< th=""><th>Re ci</th><th>2 C</th><th>in *F (micra- mhas at 25° C)</th><th>(micra- mhas at 25° C)</th><th></th><th>Ŭ H</th><th>Calcium Magne- (Ca) (Mg)</th><th>agne- Sc mun (Mg)</th><th>Sadium Pat (Na) ()</th><th>Potos - Carban sium ate (K) (CO₃) (</th><th>In Bicor bonote () (HCO₃)</th><th>Sul- fate (SO₄)</th><th>Chla- ride (CI)</th><th>NI- trate (NO₃)</th><th>Fluo- ride (F)</th><th>Baran (B)</th><th>Silica (SiO₂) 0</th><th>ther constituents</th><th>solved solids in ppm</th><th>-pog</th><th>atal N.</th><th>-T +</th></t<>	Re ci	2 C	in *F (micra- mhas at 25° C)	(micra- mhas at 25° C)		Ŭ H	Calcium Magne- (Ca) (Mg)	agne- Sc mun (Mg)	Sadium Pat (Na) ()	Potos - Carban sium ate (K) (CO ₃) (In Bicor bonote () (HCO ₃)	Sul- fate (SO ₄)	Chla- ride (CI)	NI- trate (NO ₃)	Fluo- ride (F)	Baran (B)	Silica (SiO ₂) 0	ther constituents	solved solids in ppm	-pog	atal N.	-T +
	MOREN						TSAI	BAY ARE	A OF SANT	CA CLARA		(2-9) ((ont.)									
	35/24-30R14 6-19-64 1300 8.3	1300			3,3		126 6.29 3		-				129 3.64	<u>39</u> 0,63		0.4			801			
	3S/2W-31K1 6-29-64 656 8.5	656 8.5	8,5	8,5			18 0.90						$\frac{51}{1*44}$	0, 3		0.4			361			
	35/24-32D2 6-29-64 74 798 8.3 T	74 798 8.3	798 8.3	8,3			34 1.70						84	$\frac{0,7}{0,01}$		0.5			458			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35/3W-1C3 6-19-64 74 1060 7.8 2	74 1060 7.8	1060 7.8	7.8			45 1						$\frac{123}{3.47}$	0,00		0.7			591			
200 100 0.00 11.1 120 </td <td>35/3W-11Q1 6-19-64 70 1330 8.1</td> <td>70 1330 8.1</td> <td>1330 8,1</td> <td>8,1</td> <td></td> <td>- Im</td> <td>63 3.14 2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>262</td> <td>0.8</td> <td></td> <td>0.5</td> <td></td> <td></td> <td>721</td> <td></td> <td></td> <td></td>	35/3W-11Q1 6-19-64 70 1330 8.1	70 1330 8.1	1330 8,1	8,1		- Im	63 3.14 2						262	0.8		0.5			721			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3S/3W+1382 6+19+64 1910 8+1 1	1910 8.1	8.1	8.1		-10	113 5.64 6					196	<u>166</u> 4.68	52 0.84		1.2			1200			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	35/34-24J1 6-19-64 65 2040 8.4 <u>13</u>	65 2040 8.4	2040 8.4	8.4		6.13	135 6.74						351 9,90	<u>38</u> 0.61		0.7			1310			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	35/3W-24Q2 6-19-64 2170 8.1 140	2170 8.1	8.1	8.1		140							<u>351</u> 9.90	<u>54</u> 0.87		0*7			1450			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4S/1W~7P2 10-31-63 1020		1020	1020									83									DWR
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5-20-64 1000		1000	1000									75 2.12									DWF
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4s/1w-7R1 10-30-63 2080		2080	2080									267									DWF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5-5-64 1700		1700	1700									288 8.12	96 1.54								DWF
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 <i>S/1</i> ₩-7R5 5-5-64 1040		1040	1040									96 2.71							_		DWB
	4s/Iw-17E4 10-16-63 1300 7.9 94	1300 7.9	1300 7.9	7.9		94							<u>272</u> 7,67	$\frac{10}{0,16}$			17		924			
	5-5-64 1870		1870	1870									$\frac{372}{10,49}$									EMC

	Analyzed by		DWR		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DVR
Hardness	N.C.				104	310							72		49
					367	537							258		229
8	a sod				3 24	0 22							30		32
Tata	solved solved in ppm				628	820							436		390
	Silica (SiO ₂) Other constituents												$\begin{array}{c} ABS & 0.0 \\ A1 & 0.02 \\ cx & +6 & 0.00 \\ cu & 0.00 \\ Fu & 0.00 \\ Phenol & 0.00 \\ Phenol & 0.00 \\ Fe & 0.05 \\ (Total) \end{array}$		ABS <u>0.0</u> A 1013 AS 0.000 Mn 0.00 PN 0.000 Prenal 0.00 Fe 0.00 (Total)
					12	14							0,58 15		0.63 13
u illian	Boran (B)				°°	0.4									
parts per million ivalents per mill	Fluc- ride (F)				0.1	$\frac{0.1}{0.01}$							0.01		0.02 0.02
arts pe clents	Ni- trate (NO ₃)				34 0.55	$\frac{20}{0,32}$							2.2 0.04		1.4 0.02
parts per million aquivalents per million	Chia- ride (CI)	cont.)	70	1.97	81 2+27	<u>223</u> 6.29	879 24,80	1200 33.85	$\frac{684}{19,29}$	98 2 . 76	86 2.43	202	78 2+20	65 1.83	75 2+12
s i	Sul - fate (SO4)	(2-9) (Cont.)			$\frac{67}{1,41}$	125							79 1.64		<u>1.19</u>
Mineral canstituents	Potas - Carbon Bicar- sum ate banate (K) (CO ₃) (HCO ₃)				321 5.26	276 4.54							<u>3.72</u>		<u>3.60</u>
eral co	Carbon- ate (CO ₃)	ARA W			0.00	0*00							0.00		0.00
u M	sium (K)	D ANTA D			1.8 6.05	2 <u>.5</u> 0 <u>.06</u>							2.1 0.05		2 <u>0</u> 0
	Sadium (Na)	EAST BAY AREA OF SANTA GLARA VALLEY			53 2+30	72 3.13							<u>52</u> 2,26		2.18 2.18
	Magne- sium (Mg)	ST BAY			61 5,02	66 5,43							26 2.16		$\frac{24}{1,99}$
	Calcium (Ca)	L.	1		46 2.32	106 5.32							60 2.99		2.59
	Æ				8.2	8,1							8.0		7.4
Specific conduct-	ance (micra- mhos at 25° C)		053	C . C	860	1220	32.00	4110	2600	174	722	1100	748	644	682
	Temp in °F														
	Date sampled		2-7-64		10-14-63	5-64	10-16-63	10-17-63	5-5-64	10-21-63	5-6-64	10-24-63	9-5-63	10-31-63	12-5-63
State well	number and ather number	WDRCM	1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	7001-MT /05	4S/1W-18D1	4S/1W-18G1	4S/1W-18H3	4S/1W-18M7		4S/1W-20D2		4S/1W-20E1	4S/1W-21F2		
	Dwner and use			Harold Farla irrigation	J. M. Enos domestic and irrigation	Pacific States Steel Industrial	Pacific States Steel abandoned	M. Rose domestic and	irrigation	Senta Cruz-Portland Cement Co.	110112891111	California Nursery Co. industrial	Citizen's Utilities municipal		

	Analyzed by		DWR	DWR	DWR	DWR	DWR	DWR	DWR	OWR
Hordness	N.C. 3		99	62	13			58	49	
Hord	as Co Tatal ppm		245	256	214		-	278	277	
Per	solved sod- solids sod- in ppm ium		30	33	34			25	53	
Total	solved solved solids		378	430	367			423	372	
	Silica (SiO ₂) Other constituents		$\begin{array}{c} \text{ABS} & \underbrace{0.0}{0} \text{ ABS} & \underbrace{0.0}{0} \text{ ABS} & \underbrace{0.00}{0} \text{ ABS} & \underbrace{0.00}{0} \text{ Cu} & \underbrace{0.00}{0} \text{ FD} & \underbrace{0.00}{0} \text{ FD} & \underbrace{0.00}{0} \text{ FD} & \underbrace{0.00}{0} \text{ FB} & \underbrace{0.00}{0$	ABS 0.00 ABS 0.00 A1 0.00 As 0.00 Cu 0.00 PB 0.00 Mn 0.00 Zn 0.00 Fe 0.01 (Total) Se 0.00				ABS 0.0 A1 0.03 Cu 0.02 Pb 0.00 Mn 0.00 Zn 0.00 Phenol 0.00 Fe 0.02 (Total)	A8S 0.0 A1 0.03 As 0.00 A1 0.02 Pb 0.01 Cu 0.02 Pb 0.01 Hm 0.00 Zn 0.01 Fe 0.01 Fe 0.02 (Total) Se $\overline{0.00}$	
	Silica (SiO ₂)				51			16		
lian	Boran (B)		0.5	0.5	<u>0*65</u>			0.74	0*0	
jer mj	Flug- ride (F)				$\frac{0.4}{0.02}$			0.3		
volents per mill	Ni- trate (NO ₃)		2.7 0.04	4.1 0.07	6.0 0.10			3.9 0.06	3*B 0*06	0.01
equivalents per million	Chlo- ride (CI)	ht.)	77 2,17	78 2.20	28 0.79	<u>30</u> 0,85	<u>57</u> 1.61	55 1+55	45 1.27	49 1.38
e i	Sul - fote (SO ₄)	-9) (C	60 1.25	68 1.42	$\frac{78}{1.62}$			72 1.50	69 1.44	
Minerol constituents	Potas-Carbon-Bicar- sum ate bonate (K) (CO ₃) (HCO ₃)	TEX (5	<u>3.57</u>	236 3.87	<u>245</u> 4.02			<u>269</u> 4.41	<u>279</u> 4.57	
erol co	arbon- ate (CO ₃)	ARA VA	0.00	0*00	0,00			0.00	0.00	
n M	Potas - Sium (K)	NTA CL	2.4 0.06	<u>2.7</u> 0.07	$\frac{3 \cdot 2}{0 \cdot 08}$			0.04	1.8 0.05	
	Sodium (Na)	EAST BAY AREA OF SANTA CLARA VALLEY (2-9) (CONL.)	<u>2.13</u>	58 2+52	<u>52</u> 2,26			4 <u>3</u> 1,87	39 1.70	
	Magns - murs (Mg)	T BAY A	25 2.06	26 2.12	$\frac{7.2}{0.59}$			29 2,41	28 2,29	
	Calcium (Ca)	EA	57 2.84	60 2.99	74			63 3,14	65 3.24	
	H		7.4	7.9	7.6			7.6	7.7	
Specific	ance (micra - mhos at 25°C)		733	762	623	638	643	734	724	
	Temp In °F									
	Date sampled		3-10-64	6-12-64	9-10-63	12-5-63	10-24-63	12-5-63	3-10-64	5-6-64
State well	number and other number	MDB6M	4S/1W-21F2		4S/1W-21K3		4S/1W-21P6			
	Owner and use		Citizen's Utilities municipal		J. W. Stocking irrigation	and domestic	Alameda County Water District	municipal		

ANALYSES OF GROUND WATER

٢

	D								-			_				
	Analyzed by		DWR	DAR	DWR		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DuR	DWR
ness	as CaCO ₃ Total N.C Ppm ppm		66	70	10		0				57					
			276	262	268		112				211					
	sod tent		27	27	35		76				35					
Totol	dis- solved solids in ppm		422	420	484		638				382					
	Silico (SiO ₂) Other constituents		ABS $0,00$ A1 $0,00$ As $0,00$ Cr $+6$ $0,00$ Pb $0,00$ Cr $0,00$ Pb $0,00$ Phenol $0,00$ Zn $0,00$ Phenol $0,00$ Fe $0,00$ (Total) Se $0,00$													
	Silico (SiO ₂)			13	13		18				15					
lion	Baron (B)		0*0	0.6	0.8		2.1				0.6					
Der mil	Fluo- ride (F)			$\frac{0,1}{0,01}$	$0_{*}1$ $0_{*}01$		$\frac{0,1}{0,01}$				0.1					
ports per million equivolents per million	Ni - trote (NO ₃)		$\frac{4_{*}4_{}}{0_{*}07}$	<u>3.4</u> 0.06	9.3		$\frac{2_*7}{0_*04}$				$\frac{4_*7}{0_*08}$					
binbe	Chio- ride (CI)	nt.)	62 1.75	62 1.76	<u>55</u> 1.55	$\frac{46}{1.30}$	$\frac{67}{1,89}$	78 2.20	$\frac{46}{1,30}$	49 1,38	<u>59</u> 1.67	$\frac{4.0}{1.13}$	34	201 5.67	3.86	66 1,86
ths in	Sul - fote (SO ₄)	(2-9) (Cont.)	69 1.44	87 1.83	$\frac{68}{1.43}$		76 1.58				$\frac{87}{1,82}$					
Mineral constituents	Patas-Carbon-Bicar- sium ote banate (K) (CO ₃) (HCO ₃)		2 <u>56</u> 4.20	234 3.84	<u>305</u> 5,00		<u>356</u> 5.84				$\frac{181}{2\star96}$					
nerol o	Carbon- ote (CO 3)	A.R.A. V.A	0.00	0.00	$\frac{4_*8}{0_*16}$		$\frac{15,6}{0,52}$				3.6					
ž		NTA CI	<u>0.05</u> 0.05	<u>1,8</u> 0,05	$\frac{1.9}{0.05}$		<u>6.0</u> 0.15				1 <u>,9</u> 0.05					
	Sodium (No)	EAST BAY AREA OF SAVIA CLARA VALLEY	2 _{*09}	46 2,00	$\frac{66}{2*87}$	68 2 <u>,96</u>	$\frac{175}{7.60}$	348			53 2,30					
	Calcium Magne- (Ca) (Mg)	ST BAY A	26 2.17	36 2.98	<u>35</u> 2,86		$\frac{17}{1.42}$			_	<u>29</u> 2.36					
	Calcium (Ca)		67 3.34	46 2.27	50 2 • 50		$\frac{16}{0,82}$				38 1,86					
	F		7.9	8.2	8.4		8.6				6°3					
Specific	once (micro - mhos at 25° C)		734	650	200	831	820	1690	825	888	620	688	653	1190	1010	750
	Тел Гел															
	Date sampied		6-12-64	10-30-63	10-30-63	5-6-64	10-21-63	5-6-64	10-21-63	5-5-64	10-30-63	10-24-63	5~5=64	10-16-63	5-6-64	10-63
State well	number and other number	MDB6M	4s/1w-21P6	4S/1W=21P7	4S/1W-21R2		4S/1W-22M2		4S/1W=28B2		4S/1W-28C1	4S/1W~28C14		4S/1W-28D4		4S/1W-2809
	Owner and use		Alameda County Water District municipal	Alameda County Water District municipal	E. F. Mortenstein irrigation		A. J. Rezendes irrigation		Joseph S. Dutra			Alameda County Water Otstrict	muntex pat	J. M. Braga Irrigation	and domescild	

	Analyzed by		DWR	DWR	1041	DWR	DWR	DWR	DWR	0WR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
	_					125		812		0		71	264				
Hardness						533		1255		187		278	447				
Per-	sod.		-		_	31		26		48		61 (28				
Total	eolved solids mppm					916		2352		398		430	774				
	Silica (SiO ₂) Other constituents																
						21		12		11		34	71				
llian	Boran (B)					0*0		0.9		1 0.4		2 0.1	1 0.4				
Der m	Flua- rida (F)					0,1 0,01		0.01		0.01		0.4 0.02	0,1				
squivalents per million	Ni- trate (NO ₃)		$\frac{2.9}{0.05}$			94 1.51		$\frac{13}{0.21}$		<u>6°0</u>		4.3 0.07	0*00				
prinpa	Chia - ride (CI)	(*)	<u>68</u> 1.92	$\frac{24}{0*68}$	$\frac{24}{0,68}$	85 2.39	<u>559</u> 15,76	794	407	$\frac{92}{2*59}$	77	$\frac{29}{0_*82}$	<u>266</u> 7.51	$\frac{177}{4_*99}$	3.07	196 5.53	492
e e	Sul - fate (SO ₄)	(2-9) (Cont.)				180		93 1.94		$\frac{41}{0,86}$		88 1,83	55 1.14				
Mineral canstituents in	Polas - Carbon - Bicar- sium ate banate (K) (CO ₃) (HCO ₃)					498		541 8,86		234		252 4.13	224 3.66				
eral co	ate (CO ₃)	RA VALLEY				0,00		0,00		0.00		0,00	0,000				
MIC	Potos - sium (K)	TA CLARA				$\frac{2 \times 5}{0 \times 06}$		$\frac{4_{*}5}{0_{*}12}$		$\frac{1.6}{0.04}$		$\frac{1.1}{0.03}$	2.7 0.07				
	Sadium (Na)	A OF SANTA				113		$\frac{200}{8*70}$		79		<u>31</u> <u>1,35</u>	$\frac{80}{3*47}$				
	Magne - sum (Mg)	BAY AND OF				56 4.60		128 10,50		$\frac{23}{1,88}$		$\frac{13}{1,06}$	58 4.76				
	Calcium (Co)	EAST				121 6.06		293 14,60	_	37		90 4.49	84				
	H					8.0		8.0				8.1	8.0				
Specific conduct-	ance (micro- mhos at 25° C)		763	484	581	1290	2720	3000	1760	650	745	660	1200	0011	737	1110	2460
	Temp In °F											70					
	0ate sampied		5-6-64	10-63	5-5-64	10-31-63	4-29-64	5-64	4-29-64	10-63	5=6=64	6-11-6	10-63	5=8=64	10-63	5-5-64	5-5-64
State well	number and ather number	MD86M	4 <i>S</i> /1 <i>W</i> -28 <i>D</i> 9	4S/1W=28F5		4S/1W=28R1	4S/1W=29J8		45/1W-29L12	4S/1W-30E3		4S/1W-30N	4S/1W~3LA2		4s/1W=3183		4s/1w-32A5
	Owner and use		Alameda County Water 1 District municipal	Washington Township Hospital	domestic	L. S. Williams domestic	Cy Caldeira domestic		Alameda County Water District municipal	Alameda County Water District	municipal	Joseph Talles	W. E. Hutchins domestic		Alomeda County Water District	municipal	Frank Betschart irrigation and domestic

	Anolyzed by		DWR		DWR	DWR	OWR	DWR	DWR	DWR	OWR	DWR	DWR	DWR	DWR	DWR	OWR	OWR
	_		Ωč		10	10	10		10	0	5	0	ă 	0	ă	0		0
ordness	os CoCO ₃ Total N.C. Ppm ppm							8 107								84	0 1044	
	sod- tum Total ppm							30 488		52 156		68 103		53 148		74 8	43 1210	47 151
to 1	dis- solved solids in ppm iu							792 3		356 5		398 6		370 5		389 7	3220 4	332 4
₽ 																	63	
	Silica (SiO ₂) Other constituents																	
								50		61		23		20		.*1	-+1	23
llion	Boron (B)					_		0.2		0.4		0.3		0.3		0.4	0.4	0.3
ports per million volents per mill	Fluo- ride (F)							0.1		$\frac{0,1}{0,01}$		0.2		0.1				0.1
orts pe	Ni- trote (NO ₃)			0.8				43 0,69	$\frac{62}{1,00}$	0,00		0.00		0.8		$\frac{1.0}{0.02}$	1.8 0.03	5.0 0.08
ports per million equivolents per million	Chio - ride (CI)	(Cont.)	$\frac{262}{7,39}$	339 9,56	$\frac{1340}{37,80}$	95 2.68	<u>102</u> 2.88	167	$\frac{180}{5,08}$	46 1.29	$\frac{37}{1.04}$	$\frac{43}{1,21}$	$\frac{40}{1.13}$	$\frac{21}{0.59}$	19 0.54	$\frac{26}{0_*73}$	35,54	50 1.41
fs in	Sul - fote (SO ₄)	(2-9) (CC						40 0,85		$\frac{12}{0,25}$		$\frac{21}{0,45}$		40 0.84		44 0.92	135 2.81	39 0.82
Mineral constituents in	Bicor- bonote (HCO ₃)							443 7.26		303		281 4.60		<u>282</u> 4.62		<u>312</u> 5.11	203 3.33	200 3.28
rol co	-Carbon- ote (CO 3)	CLARA VALLEY						10.8 0.36		0.00		$\frac{12}{0,40}$		$\frac{12}{0,40}$		0,000	00.00	4.8 0.16
WIL	Potos-C sium (K)	SANTA CLA						2 <u>3</u> 0.06		$\frac{1.8}{0.05}$		$\frac{2 \cdot 0}{0 \cdot 05}$		$\frac{1_{*}8}{0_{*}05}$		$\frac{1,8}{0,05}$	7.2 0.18	$\frac{2.1}{0.05}$
	Sodium (No)	AREA OF SV			<u>166</u> 7,22			$\frac{96}{4_{*}17}$		$\frac{81}{3,50}$		$\frac{103}{4.47}$	100 4,35	$\frac{77}{3,35}$		$\frac{114}{4_*96}$	422 18,36	63 2,75
	Mogne - sium (QM)	EAST BAY A						54 4.41		18 1,48		$\frac{13}{1,13}$		13 1,08		$\frac{7.7}{0.63}$	118 9.71	$\frac{16}{1,26}$
	Colcium (Co)	EAS						108 5.36		<u>33</u> 1,65		18 0.92		38 1.88		$\frac{21}{1,05}$	290 14,47	$\frac{35}{1,76}$
	Ŧ							8.4		8.1		8,5		8,5		8.3	8.1	8.3
Specific	once once (micro- mhos of 25° C)		1300	1570	0185	1130	1550	1200	1410	590	713	580	737	550	602	650	4430	530
	Temp n • F															70	66	
	Dote sompled		10-63	4-29-64	5-11-64	10-16-63	4-29-64	10-22-63	5-4-64	10-63	5-27-64	10-17-63	9-64	10-14-63	5~5-64	6-29-64	6-29-64	10-16-63
Stote well	number ond other number	MDB6M	4S/1W-32P1		4S/1W-33E1	4S/1W-33Kl		4S/1W-34Q4		4S/1W-34R2		4S/1W=35P3		4S/2W-3Rl		4S/2W-5A14	4s/2W-9Q2	4S/2W-10C1
	Owner and use		Alameda County Water Oistrict		J. and V. G. Planetta irrigation and domestic	R. Clark irrigation	and domestic	Bertha Rose domestic		0. N. Hirch irrigation		Alameda County Water District	municipal	Weigman domestic and	irrigation	City of Hayward municipal	J. F. & E. F. Bettencourt irrigation	Holly Sugar industrial

LABLE E-1

	State well			Specific					Mineral	Mineral constituents	uents	Ē	parts per millian equivalents per million	parts per millian valents per mill	million	le.		Totel	į	Hardne		
Owner and use	number and other number	Date sampled	Temp in °F		PH Calc	Calcium Magne- (Co) (Mg)	me - Sadium (No)		Polas-Corbon-Bicor- sium ate bonole (K) (CO ₃) (HCO ₃)	Blcc bond (HCC		Sul - C fote r (SO ₄)	Chio- ride (CI)	NI- FI trote r (NO ₃)	Fluo-Boride (F)	Baran Sil (B) (S	Silico (SiO ₂) Other constituents	- sib solived solids in ppm	tue:	as CaCO ₃ Total N.C ppm ppm		Analyzed by
	MD86M					EAST BA	EAST BAY AREA OF SANTA CUARA VALLEY	S SANTA	CLARA	VALLEY		(2-9) (Cont.)	~									
Holly Sugar industrial	4S/2W-10C1	5-25-64		623									<u>34</u> 0.96					_				DWR
Alameda County Water District	4S/2W-10N6	10-24-63		573									47 1,32									DWR
municipal		5-5-64		664								1++1	57 1.61									DWR
Scutto Brothers Irrigation	4S/2W-10Q2	10-23-63		2700 8.	8.0 30	301 126 15.00 10.40	157 6.83		4.0 0.00		417 6.84 7.	368 7.66 17	610 17.20 0	<u>5.5</u>	$\frac{0.1}{0.01}$	0.5	17	1876	21	1270	928	DWR
and domestic		5-5-64		2940								ulti	537 15.14									DWR
H. & C.Andrade domestic and	4S/2W-10Q3	10-18-53		2100								1.10	340 9.59									DWR
irrigation		5-5-64		2490								10	376 10.60									DWR
J. (Whipple Bandoned	4S/2W-11A2	10-24-63		866									$\frac{54}{1.52}$									DWR
		5-64		820 7	7.8	72 3.60 33 2.70	3 68 70 2.95		0.8 0.00 0.02 0.00		358 6 5.86 1.	66 1.30	53 1.49	<u>31</u> 0.50	$\frac{0.1}{0.01}$	0.2	18	520	32	315	22	DWR
Kitayama irrigation	4S/2W-11G1	10-17-63		938									<u>52</u> 1,47									DWR
		5-11-64		844								,	42 1.18	4 <u>*9</u> 0.08								DWR
M. Faria domestic	4S/2W-11J1	10-23-63		890									57 1,61									DWR
Henry Dutra domestic and irrigation	4s/2w-11Q5	5-6-64		673									60 1.69 0	1.3 0.02								
Joe Coularte domestic	4S/2W-11R12	10~63		974									84 2.37									DWR
		5-7-64		1460									3.81	53 0.85								DWR
Alameda (ounty Water District municipal	45/2W~12C1	10-63		643									61 1,72									DWR

	Analyzed by		~	p#	×	×		8		pr -	8	84	24		22	e	22
			DWR	DWR	DWR	DWR	_	DWR		3 DWR	DWR	DWR	0 DWR		DWR	DWR	DWR
rdness	as CaCO ₃ Total N.C. ppm ppm					317				1283					47		
						438				1560			193		197		
-	De sod					832 29				72 21			506 56		350 28		
Tote	dis- solved eotids in ppm					<u></u>				2872			20		ŝ		
	Silica (SiO ₂) Other constituente																
	Silica (SiO ₂)	_				20				15			22		19		
Lion	Baron (B)					0*4				0.6			0*0		0,3		
er mi	Fluc- ride (F)					0.01				0,1			0.1		0.1		
parts per millan valents per mill	NI- trote (NO ₃)		$\frac{1.4}{0.02}$		$\frac{63}{1,02}$	35 0,57				$\frac{19}{0,31}$			0.0		$\frac{11}{0.18}$		
parts per million equivalents per million	Chlo- ride (CI)	nt.)	$\frac{57}{1+61}$	$\frac{88}{2 * 48}$	88 2,48	$\frac{227}{6,41}$	$\frac{317}{8_*94}$	$\frac{79}{2 + 23}$	872 24,59	968 27+30	1200 33.84	54 1.52	67 1,89	29 0.82	$\frac{34}{0_*97}$	$\frac{44}{1*24}$	25 0.70
in in	Sul - fate (SO ₄)	(2-9) (Cont.)				139 2.91				401 8,34			38 0,78		$\frac{62}{1\star28}$		
Mineral constituents in	Bicar- bonate (HCO ₃)					$\frac{147}{2 \cdot 42}$				<u>338</u> 5.54			<u>356</u> 5.84		$\frac{183}{3*00}$		
eral c	Carbon- ate (CO ₃)	ARA VA				$\frac{0}{0*00}$				00.00			$\frac{12}{0,40}$		0,00		
W	Polas-Carbon- sium ate (K) (CO ₃)	SANTA CLARA VALLEY				2.5 0.06				$\frac{4_*3}{0_*11}$			$\frac{1.8}{0.05}$		$\frac{2 \cdot 8}{0 \cdot 07}$		
	Sadium (Na)	AREA OF SI				$\frac{84}{3,65}$	94 4,09			$\frac{202}{8,80}$			<u>116</u> 5.05		<u>36</u> 1,55	$\frac{36}{1,57}$	
	Calcium Magne- sium (Ca) (Mg)	EAST BAY A				$\frac{71}{5,81}$				$\frac{161}{13,20}$			28 2,28		$\frac{22}{1_*78}$		
	Calcium (Ca)	EV				59 2.96				401 20 . 00			32 1,58		43 2.16		
	E					8.2				7.9			°.2		8.2		
Specific	ence ence (micro- mhos at 25° C)		660	1140	1140	1160	1880	872	3650	3500	4900	806	750	149	505	720	569
	Temp in °F																
	0ate sampled		5-5-64	10-23-63	5-25-64	10-23-63	5-11-64	10-23-63	5~5~64	10-23-63	5=25=64	5-7-64	10-23-63	5-5-64	10-16-63	5-64	10-17-63
Stote well	number and other number	MDBGM	4S/2W=12C1	4S/2W-12N4		4S/2W-13C2		4S/2W-12P2	4S/2W-13E2	4S/2W-14E1		4S/2W-14J1	4\$/2W-15C1		4S/2W=15L4		4S/2W-22P2
	Owner and use		Alameda County Water District municipal	H. Faria irrigation	and domestic	J. May irrigation		M. S. Santos irrigation	Carmelo Coeso irrigation	T. E. Harvey irrigation		A. Caeton irrigation and domestic	T. P. Marvey Irrigation and domestic		King		H. H. & W. D. Patterson irrigation

WATER	
GROUND W	
0F	1001
ANALYSES	

	Anoiyzed by		~	~	~	~	~	~		~	~	<i>cc</i>	<i>64</i>	~		~	<i>cc</i>	cć.
			DWR	DWR	DWR	DWR	DWR	DWR		DWR	DWR	DWR	DWR	DWR	DWR	0 DWR	0 DWR	DWR
Hordness	CoCO ₃ Ppm			55		34		1060		236		34		244				198
	<u> </u>			248		261		1365		396		2.55		390		168	123	644
d	as sod-			3 24		5 22		5 15		5 19		; 22		3 29		2 42	8 73	0
Toto	solved solids in ppm			388		396		1986		576		354		728		312	548	1510
	Silico Other constituents (SiO2)																	
				16		17		16		15		16		17		19	14	
lion	Boron (B)			0.3		0.3		0.5		0.4	0.4	0.3		0.4	0,3	0.3	0.4	0.4
millio er mi	Fluo- ride (F)			$\frac{0.1}{0.01}$		$\frac{0,1}{0,01}$		$\frac{0_*1}{0_*01}$		$\frac{0,1}{0,01}$		$\frac{0_{*}1}{0_{*}01}$		$\frac{0.1}{0.01}$		0.1	$\frac{0.1}{0.01}$	
ports per million volents per mill	Ni- trote (NO ₃)			0.00		$\frac{11}{0,18}$		$\frac{12}{0_{*}19}$		9.4 0.15		5.1 0.08		4.4 0.07		$\frac{1.2}{0.02}$	0.00	$\frac{1.2}{0.02}$
ports per millon equivolents per million	Chlo- ride (CI)	it.)	25 0.70	<u>53</u> 1.49	<u>52</u> 1.47	$\frac{35}{1,00}$	34 0.96	808 22 . 80	$\frac{624}{17,60}$	177	2.38 6.78	35 0,99	36 1.01	$\frac{241}{6*81}$	$\frac{211}{5,95}$	32 0, 89	<u>128</u> <u>3,59</u>	704 19 . 86
ts in	Sul - fote (SO ₄)	(2-9) (Cont.)		58 1+20	_	$\frac{54}{1,13}$		<u>115</u> 2.42		$\frac{70}{1.47}$		46 0,96		$\frac{54}{1,13}$		48 1.01	25 0.53	71 1.48
Minerol constituents	Bicor- bonote (HCO ₃)			236 3.86		249 4.09		<u>373</u> 6.11		3.20		245 4.02		$\frac{178}{2.92}$		244 4.00	<u>286</u> 4.68	299 4.90
erol c	Carbon- ofe (CO 3)	LRA VA		0,00		13.8		0,00		0*00		$\frac{12}{0*40}$		0,00		0*00	9.6 0.32	0.00
Min	Potos-Carbon- sium ote (K) (CO 3)	SANTA CLARA VALLEY		2.0 0.05		1.8 0.05		3.5 0.09		2,3 0,06		$\frac{1,7}{0,04}$		$\frac{2.6}{0.07}$		$\frac{1.6}{0.04}$	2.0 0.05	7.6
	Sodium (No)	OF		36 1.55	<u>36</u> 1.57	<u>35</u> 1,50		$\frac{110}{4 * 80}$		42 1.83		$\frac{34}{1.47}$		75		57 2.47	<u>157</u> 6.83	$\frac{400}{17,40}$
	Mogne - sium (Mg)	T BAY AREA		34 2+78		28 2,34		141 11.58		<u>52</u> 4.26		25 2.06		<u>52</u> 4.25		12 1.04	$\frac{6_{*}1}{0_{*}50}$	55 4.56
	Calcium (Ca)	EAST		44 2.19		58 2.88		$\frac{295}{14_*71}$		73		$\frac{61}{3*04}$		72 3.56		46 2.32	<u>39</u> 1.96	86 4.29
	На			8.0		8.4		7.1		8.1	_	8.4		7.9		8.1	8.5	8.1
Specific			573	530	700	290	640	2900	2680	076	1270	620	620	1000	1130	525	840	2780
	Temp in °F													_				
	Dote sompled		5-64	10-17-63	5-5-64	10+18-63	5-5-64	10-22-63	5=64	10-30-63	2-8-64	10-18-63	5-6-64	10-18-63	5-5-64	10-31-63	10-22-63	3=13-64
Stote weil	number and other number	MDBGM	4s/2W-22P2	4S/2W-23F2		4S/2W-24D4		4S/2W-24F6		4S/2W=24J1		4S/2W-24L6		45/2W-26A1		4s/2W=27A2	4s/2W-35L2	4s/3w-1D2
	Owner and Use		H.H. & W.D. Patterson irrigation	Patterson Ranch irrigation		Louie Crace irrigation		Amaral irrigation		J.A., J.R., & L.A. Macado	irrigation	M. Kitani domestic and	irrigation	H.H. & W.D. Patterson Irrigation		H.H. & W.D. Patteraon Irrigation and domestic	Ernest Malini industrial	Bey Toll Authority

	Analyzed by		OWR	OWR	DWR	OWR	DWR	OWR	DWR	DWR	DWR	OWR	DWR	DWR	DWR	DWR	DWR	DWR
			45			567		24		62		57	_			0		0
Hardness	as Col Total PPm		232			784		255		251		287				158		09
ģ	to dent		74			30		45		50		39				48		80
Total	dis- salved solids in ppm		1090			1450		622		588		596				364		370
	Silica (SiO ₂) Other constituents																	
	Silica (SiO ₂)		19			15		15		22		25				18		20
uoi	Boron (B)		0.27			2.0		0.3		0.5	0.5	0.3				0.3		0*4
parts per million valents per mill	Fluo- ride (F)		0.3 0.02			0.1 0.01		0.1		$\frac{0,2}{0,01}$		$\frac{0.1}{0.01}$				$\frac{0,1}{0,01}$		0.01 0.01
rts par ents p	NI- trate (NO ₃)		0.9 0.01			0.00		2.1 0.03		00.00		3.6 0.06				$\frac{1.3}{0.02}$		0.00
parts par million aquivalents per million	Chio- ride (CI)	1t.)	500 14.10	20 0.56	20 0 <u>,56</u>	539 15,21	563 15.88	149	533 15,03	$\frac{201}{5 * 65}$	409 11.54	$\frac{135}{3,81}$	95 2.68	<u>317</u> 8.94	$\frac{69}{1.94}$	28 0.81	28 0,79	20 0.57
s in	Sul - fote (SO ₄)	(2-9) (Cont.)	<u>57</u> <u>1,19</u>			$\frac{125}{2*61}$	-	<u>32</u> 0.67		42 0.88		<u>56</u> 1.17				29 0,60		25 0.53
Mineral canstituents	Bicar- bonate (HCO ₃)		208 3.41			264 4.34		273		231 3.78		281 4.60				295 4.84		283 4.64
eral ca	arbon- ate (CO ₃)	RA VAI	10			0.00		4.2 0.14		00.00		00*0				3.0 0.10		$\frac{12}{0.40}$
Min	Patas-Carbon- sium ate (K) (CO ₃)	SANTA CLARA VALLEY	14 0.36			3.5 0.09		2.5 0.06		2.3 0.06		4.3 0.11				2.5 0.06		1.4 0.04
	Sodium (Na)	AREA OF SA	326 14.18			155 6.75		99 4 , 30		<u>116</u> 5.05		87 3,80				69 3.00		$\frac{113}{4,90}$
	Magne - stum (Mg)	EAST BAY A	0.6 0.05			88 7,18		23 1.86		40 3.33		43 3.47				1.08		$\frac{3.3}{0.27}$
	Calcium (Ca)		92 4 • 59			<u>170</u> 8,50		65 3.24		$\frac{34}{1*70}$		46 2,28				42 2.08		$\frac{19}{0,94}$
	H		8.6			6°L		8.4		8.2		8.2				8.3		8.5
Specific	(micro- mhos at 25° C)		1990	587	587	2000	2360	825	2120	950	1980	860	963	1490	957	570	675	520
	Temp										- 100							
	Date sampled		7-10-63	10-17-63	5-4-64	10-23-63	5-5-64	10-23-63	5-7-64	10-23-63	5-5-64	10-22-63	5-64	5-64	5-64	10-17-63	5-64	10-24-63
State well	nµmber and ather number	MDBGM	4S/3W-31B1	5S/1W-4D1		5S/1W-6D1		5S/1W-6G1		5S/1W-9J1		5s/1W-9K1		5S/1W-9M1	5S/1W-15C1	5S/1W-17A1		5s/2w-181
	Owner and use		State of California	E. R. Blacow irrigation, stock,	and domestic	J. E. Trindad stock and	irrigation	L. Milani irrigation		Alameda County East Bay Title Insurance	Company domestic, duck pond	A. F. Brosíus irrigation and	domestic	W. 8. Brinker Irrigation	Lawrence Roland, Jr. water ponds	P. G. & E. industrial and	domestic	Phillip Encisco stock and domestic

ANALYSES OF GROUND WATER 1964

	Azed																
	by		DWR	DWR		OWR	OWR			DWR	DWR	DWR	DWR	DWR	DWR	DWR	OWR
Hardness	N.C.								0								
	1. 1							_	207								
<u>b</u>	eolved sod- in ppm rum					370	360	486	584 59	352	297	375		706	268	325	318
ř <u>á</u>						m	en 			(*)							
	Silica (SiO2) Other constituents																
											-			mi	~1		
u IIan	Baron (B)		0.4	0.2		0.4	0.2	2.6	1.4	0.4	0.2	0,1	0.1	0.8	0.2	0.1	0.2
equivalents per million	Flug- ride (F)																
arts pr alents	NI- trote (NO ₃)					_			$\frac{1,4}{0,02}$								
aduit	Chlo- ride (CI)	nt.)	18 0.51	13 0,37	1	22 0.62	23 0,65	65 1.83	58 1.64	$\frac{21}{0,59}$	29 0.82	37 1.04	15 0.42	87	$\frac{14}{0,39}$	24 0.68	30 0,85
Ē	Sul - fote (SO ₄)	(2-9) (Cont.)			(- (- 9)				$\frac{107}{2 \cdot 23}$								
Mineral constituents	sicar- onate 4CO3)				BAY AREA OF SANTA CLARA VALLEY				<u>379</u> 6.21								
rol con	Patas-Carbon-Bicar- sium (K) (CO ₃) (HCO ₃)	RA VALI			A CLARA				0.00								
Mine	atas-Co sium (K)	TA CLA			JF SANT				2.0 0.05								
	Sodium P	BAY AREA OF SANTA CLARA VALLEY			AREA				139 6.05								
		AY AREA			SOUTH BAY				31 2.59								
	uum Mogne. sium (Mg)	EAST B							31 1+55 2.								
	Calcium (Ca)								8.1								
Specific conduct-	ance pH (micro- pH mhas of 25° C)		582	435		643	586	828	954 8,	590	540	632	450	1190	442	542	548
d S	Temp in °F (T					68	64	66	66	64		70	66	70	60	64	68
	Date sampled		5-6-64	5-7-64		9-20-63	8-21-63	8-27-63	9-25-63	8-21-63	9-23-63	8-22-63	8-16-63	8-31-63	9-25-63	8-23-63	8-26-63
State well	number and other number	YDB6M	5S/2W-181	5S/2W-INI		5S/1E-31E1	6S/1E-7C1	6S/1E-23M	6S/1E-27C	6S/1E-28A4	6S/1E-30M1	6S/1W-14E1	6S/1W-15N3	6S/1W-15Q1	6S/1W-17M1	6S/1W-29C1	6S/24-9H1
	Owner and use		Phillip Encisco stock and domestic	Westvaco Chemical Co. industrial		J. R. Coelho domestic	Winsor Bros. domestic	Azzarello irrigation	Shattuck irrigation	R. Murray domestic	M. Muchado irrigation and domestic	A. French irrigation and domestic			C. W. Dunton irriarian	G. H. Fukumoto domestic and irrisation	Rezentes domestic

	Anolyzed by	-	OWR	OWR		DMR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	OWR
855							0	58	53					22		100	
Hardness	as Cal Total P.P.m						189	484	182					169		298	
Dar	sod						47	20	17					20		17	
Tata	solved solved in ppm		304	312		392	396	596	269	543	695	493	506	231		416	282
	Silica (SiO ₂) Other canstituents																
11 ion	Baran (B)		0*1	0.2	0*0		0.2	0.2	0.1	0,2	0.4	0.*2	0.2	0.1	0*1	0.2	0.1
equivalents per million	Ni- trate (NO ₃) (F)						2.8 0.04	<u>12</u> 0.19	10 0.16					9.0 0.14		52 0.84	
par	Chla- ride (CI)	t.)	45 1,27	20 0 . 56	29 0.82	34 0.96	37 1.04	98 2.76	14 0.39					18 0.51	29 0.82	35 0,99	
Ē	Sul - fote fote (SO4)	(2-9) (Cont.)		0	0		58 1.21 1	20 0.42	62 1,29					28 0,58	10	59 1.23	
	_						292 4.78 1.	479 2 7.85 0.	$\frac{157}{2+57}$ $\frac{6}{1.}$					179 2.93 0.		3.97 1.	
Mineral constituents	Potas-Carbon-Bicar- sium ate banate (K) (CO ₃) (HCO ₃)	SANTA CLARA VALLEY					0 <u>000</u>	0.67 4	0.00 2.					0.00		0.00	
Miner	otas-Car ium (K) (C	NTA CLA					0.03 0.	0.03 0.	0.03 0.		-			0.03 0.		0,04 0.	
	Sodium (Na)	SOUTH BAY AREA OF SA					78 1	<u>56</u> 2.44	<u>17</u> 0.74		-			19 0.83		29 1+26	
	Calcium Magne- (Ca) (Mg)	TH BAY					<u>31</u> 2,53	101 8,32	22 1.84					17 1,38		38 3 , 16	
	(Ca)	-10S					25 1,25	27 1,35	36 1.80					40 2+00		56 2.79	
	Hd						7.9	5°5°	7*9					8.1		8.2	
Specific	ance (micro- mhos at 25° C)		571	516	601	648	692	1032	643	882	1180	850	864	607	445	678	477
0, 0	Temp n °F			68	70	68	70	72	09	72	64		62	67	64	99	65
	Date sampled		9-30-63	9-26-63	9-26-63	8-26-63	8-15-63	8-14-63	9-27-63	8=13=63	9=19-63	8=14=63	9=18-63	9-6-63	9-10-63	9-10-63	8-6-63
Stote wall	number and other number	MDB6AM	6S/2W~20N1	6S/2W-24M3	6S/2W-34Ml	7S/1W-5L1	7S/1E-208	7S/1E-25A2	7S/1W-35H1	7S/2E-6N	7S/2E-18B1	7S/2E-19E1	7S/2E-33D	8S/1W-10G	8S/1W-13A2	8S/1W-1581	8S/1E-4L
	Owner and use		California Water Service Company municipal	Horm Bros.	H. Mantelli irrigation and domestic	W. S. Bennet domestic and irrigation		J. A. Baptista domestic and irrigation	Mayfair Packing Co. irrigation	A. Jaca irrigation	M. F. Douglass domestic	Yonemoto domestic and irrigation	H. Gerdts domestic	T. Yuki irrigation			L. F. Farrone irrigation

	State well			Specific					Miner	Minerol constituents	1	ē	parts per million equivalents per million	parts per millan valents per mill	million			Total	à	Hardness	ss	
Owner and	number and ather number	Date	Tamp	ance (micro-	H	Calcium			ntas - Cat	bon-B.	Bicar - S			Ni- F			ica out	solved	cent sod	ŏ I		Anolyzed. by
U.54				mhas at 25° C)	_	(Ca)	arum (Mg)	(N0)	(K) (CO ₃)	03) (H		fate (SO ₄) ((CI)	(NO ₃) ((F) (f	(B) (Si	(SiO ₂) Other constituents	mqq ni	Ē	Tata I ppm	DD C.	
	MDB6M					SOUTH	BAY	AREA OF SAV	SANTA GLARA	RA VALLEY	EX (2-9)	9) (¢ont.)	T									
Hall irrigation	8S/1E-13K	9-12-63	70	937												0.2		588				DWR
Athenour Bros. 1rrigation	8S/1E-1601	8-15-63	70	369	7.9	30	22 1,82	0,56	2.7 0.07	0.00	181 2.97 0	27 0,56	8*5 0*24 0	2.4 0.04		0.1		218	14	166	18	DWR
Farrand tre domestic	8S/1E-17B	8-6-63	62	360	7.9	28 1.40	22 1,84	0.52	0.02	0 0,00 2	177 2+90	25 0.52	8.5 1 0.24 0	1.0 0.02		0.2		203	71	162	17	DWR
F. Mazzone domestic & irrigation	8S/1E-27C1	9-10-63	62	733	°.°	<u>39</u> 1,95	57 4.70	32 1+39	0.6	0.00	280 1	91 1.89	<u>27</u> 0.76 0	36 0.58	-1	0.5		435	17	333	103	DWR
IBM Corp. irrigation	8S/2E-7E	8-7-63	64	610	7.9	4 <u>3</u> 2,14	42 3.43	25 1,09	<u>1.6</u> 0.04 0	0.00	279 4.57	58 1+21	19 0.54 0	9.4 0.15	- 1	0.2		352	16	279	50	DWR
Rouse domestic	8S/2E-16E1	9-12-63	70	531	8.2	50 2.50	29 2.42	21 0.91	1.3 0.03	0.00	<u>260</u> 4.26	42 0.87	20 <u>7</u> 0+56 <u>0</u>	7.6 0.12		0.1		336	16	246	33	DWR
Kawashima	8S/2E-17L2	8-8-63	63	616									18 0.51			0.2		351				OWR
Benson domestic	8S/2E-34A1	8=8=63	61	558	7.8	46 2.30	31 2.58	26 1,13	1.4 0.04	0.00	3.60 1	66 1, 37	18 0.51 0	26 0.42	-1	0.2		351	16	244	64	DWR
H. Ramke irrigation	9s/2E-2C1	8-8-63	61	520	7.8	29 1.45	31 2+55	<u>31</u> 1.35	1.4 0.04	0*00	3.18 1	58 1.21 0	20 0.56 0	21 0.34		0.2		304	25	200	41	DWR
J. Martinez Irrigation	9S/3E-2283	8-9-63	68	459												0.1		266				DWR
J. Chiri irrigation	9S/3E~36F	8-12-63	97	463	8,1	$\frac{44}{2,20}$	$\frac{17}{1_*42}$	27 1,17	1.9 0.05	0*00	203 3.33 0	21 0.44	0,62 0	22 0.35		0.1		268	24	181	15	DWR
								LIVERMORE VAL	RE VAL	LLEY (2-	(2-10)											
T. P. Bishop Co. irrigation	2S/1W-22A1	6-30-64	67	1050	8.3	76 3.79	$\frac{18}{1.44}$	<u>118</u> 5.13	2.4 0.06	4 0.13	306 5.02	13 0.27	168 0	0.6 0.01		0.3		579	67	262	ŝ	DWR
Alameds County domestic	3S/1E-3Q1	6-30-64	64	1280	8,2	123 6, 14	$\frac{5.0}{0.41}$	148 6*44	1.4 0.04	0,00	448 7.34 1	70	3.75	29 0.47		2.2		742	67	328	0	DWR
U. S. Alr Force domestic and irrigation	3S/1E-8H3	6-30-64	65	895	8.2	64 3.19	<u>56</u> 4,64	<u>37</u> 1.61	0.04	0,000	358 3.87	53	2.26	9 <u>*5</u> 0 <u>*15</u>		0.4		526	17	392	6 ⁰	DWR
	3S/1E-9K2	6-30-64	65	1220	8,1	64 <u>3, 19</u>	80 6, 56	79 3.44	2.5 0.06	0,00	452	79	<u>128</u> <u>3.61</u>	$\frac{21}{0,34}$		<u>1.6</u>		634	2.6	488	117	DWR

	2			_									 	
	Anolyzed by		DWR	DWR	DWR	DWR	DWR	DWR						
	as CoCO ₃ Tatal N.C. ppm ppm		166	201	87	21	50	190					 	
	1 1		582	569	346	247	232	528	 					
	Lind Cont		25	17	17	31	19	15	 					
Totol	dis- eoluds in ppm		816	743	154	364	304	686						
	Silica (SiO ₂) Other constituents													
	Other co				ABS 0.0	ABS 0.0								
	Silica (SiO ₂)								 				 	
Ilian	Boron (B)		1.7	0.7	0.4	0.9	0.2	0.4						
ports per million equivalents per million	Fluo- ride (F)								 				 	
orts pe	Ni- trate (NO ₃)		19 0,31	$\frac{14}{0,22}$	20 0.32	$\frac{1.4}{0.02}$	$\frac{13}{0,21}$	$\frac{14}{0,22}$	 	_			 	
aduivo	Chia- ride (CI)		$\frac{170}{4,80}$	$\frac{177}{4_{*}99}$	6 <u>3</u> 1,78	58 1,64	$\frac{31}{0,87}$	$\frac{131}{3.70}$						
E	Sul - fote (SO ₄)	Ŀ.	$\frac{94}{1,96}$	45 0.94	40 0,83	44 0,92	<u>36</u> 0,75	$\frac{72}{1,50}$					 	
Mineral constituents	Patas-Carbon-Bicar- sium ate bonoie (K) (CO ₃) (HCO ₃)	VALLEY (2-10) (Coht.)	508 8,33	<u>7.36</u>	316 5.18	<u>275</u> 4,51	$\frac{222}{3.64}$	412 6+75						
eral co	arbon- ate (CO 3)	(2-1	0*00	0.00	0.00	0,00	00.00	0.00						
Ň	Patas- sium (K)	VALLED	2.8 0.07	$\frac{2.4}{0.06}$	1.8 0.05	$\frac{1.6}{0.04}$	1.1 0.03	2.2 0.06						
	Sodium (Na)	IVERMORE	$\frac{92}{4.00}$	<u>53</u> 2.30	<u>33</u> 1.44	52 2,26	25 1.09	42 1,83			_			
	Magne - sum (Mg)		80 6. 54	81 6+68	$\frac{9.4}{0.77}$	<u>1.2</u> 0.10	3.6	<u>63</u> 5,21						
	Calcium (Ca)		102 5.09	94 4,69	123 6.14	97 4.84	87	107 5.34				_		
	Hd		8,0	8,3	8.2	8.1	8.1	7.8						
Specific	conduct- ance (micra- mhas at 25° C)		1440	1300	677	696	546	1150						
	Temp in °F		64	66	66		64	66						
	Date sampied		6-30-64	6-30-64	6-30-64	6-30-64	6-30-64	6-30-64						
1	er ond number	221	11	121	1H1	3P2	SLI	7H2						
Clote	number and ather number	MDB6M	3S/1E-9L1	3S/1E~11E1	3s/1E-11H1	3S/1E-13P2	3S/1E-15L1	3S/1E-17H2					 	
	Owner and use		Neilson	Jamieson irrigation	Ed Hageman domestic and irrigation	California Rock and Gravel Company domestic	H. J. Kaiser Ind. domestic	M. Kruse irrigation						

THDLE E-1

ANALYSES OF GROUND WATER 1964

Heater Suit Ono- Ni- Flue- boxer Suit Chia- Nia- Flue- boxer Suit (Ci) Nia- (Flue- INN (No. 3) (Ci) Nia- (Flue- INN (No. 3) (Ci) Nia- (Flue- INN (No. 3) (Ci) Nia- (Ci) INN (No. 3) (Ci) Nia- (Ci) Inno 1-1-5 (Oi) (Ci) (Ci) Inno 1-10 1-10 Inno Inno	- Sadium Palas-Carbon-Bicar- (No) (K) (CO ₃) (HCO ₃)	ance pH Calcium Magna - (mlcra - pH Calcium Magna - (mg) sium
$\frac{3)}{\frac{57}{1.61}}$		
$\begin{array}{c c} & & & \\ & & & \\ \hline \\ & & & \\ \hline & & & \\ \hline \\ \hline$	CENTRAL COASTAL REGION (No.	
$\frac{57}{1.61}$ $\frac{51}{1.58}$	PAJARO VALLEY (3-	
51 56 1.06 1.58		629
	$\frac{46}{2.00} \frac{1.7}{0.04} \frac{0}{0.00}$	715 8.2 78 21 21 21 21 21 21 21 21 21 21 21 21 21
$\frac{19}{0.54}$		430
<u>0.13</u>		426
$\frac{185}{3.03} \frac{23}{0.48} \frac{21}{0.59} \frac{8.5}{0.14}$	$\frac{22}{0.96} \frac{1.7}{0.04} \frac{0}{0.00}$	428 8.0 28 24 1.40 2.00
<u>0.76</u>		391
29 0.82 0.71		396
<u>26</u> 0.73		605
<u>23</u> 0.65		524
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{28}{1.22} \frac{3.8}{0.10} \frac{0}{0.00}$	518 8.1 35 30 1.75 2.45
14 0.39		466
$\frac{558}{8*23} \frac{153}{3*19} \frac{70}{1*97} \frac{1*3}{0*02}$	$\frac{73}{3.18} \frac{2.0}{0.05} \frac{28}{0.93}$	1240 8.6 96 82 4.79 6.77
70 1,97		1260
$\frac{242}{3,97} \frac{34}{0,71} \frac{16}{0,45} \frac{0,4}{0,01}$	$\frac{26}{1,13} \frac{2,5}{0,06} \frac{0}{0,00}$	494 8.2 78 4.0
<u>13</u> 0.37		453
$\frac{214}{3.51} \frac{36}{0.75} \frac{13}{0.37} \frac{0.4}{0.01}$	$\frac{27}{1.17} \frac{1.9}{0.05} \frac{0}{0.00}$	452 8.0 42 18.0 42 18.0 12.52

	Analyzed by		OWR	DWR	OWR	DWR	DWR	DWR	OWR	DWR	DWR		DWR	DWR	OWR	
9652	CO 3 N.C.								77		0				40	
	as CaCO ₃ Tatai N.C. ppm ppm								137		74				185	
ć	dis- cent calved sod- in ppm ium								643		87				117	
Tatel	adive solve bolide in ppr								324		759				276	
	Silica (SiO ₂) Other canstituents															
	Silica (SiO ₂)														-	
Lien	Boran (B)			0.6					0*0		0.2				0.0	
ber millio	Flua- ride (F)															
parts per million volents per mill	NI- trate (NO ₃)						$\frac{1,1}{0,02}$		22 0.35		0.7		$\frac{17}{0.27}$	$\frac{11}{0,18}$	36 0,58	17 0.27
parts per millian equivalents per millian	Chia- ride (CI)		$\frac{14}{0,39}$	<u>5270</u> 148.67	37 1.04	$\frac{45}{1.27}$	46	$\frac{77}{2.17}$	86 2.43	234 6.60	<u>256</u> 7.22				$\frac{21}{0.59}$	
. <u>e</u>	Sul - fate (SO ₄)								$\frac{15}{0,31}$		$\frac{90}{1.87}$	7			$\frac{13}{0.27}$	
Mineral canstituents in	Pales-Carbon-Bicar- sium ate banate (K) (CO ₃) (HCO ₃)	(3-2) (Cant.)							$\frac{113}{1,85}$		220 3.60	GILROY-BOLLISTER BAGIN (3-3)			$\frac{197}{3 \cdot 23}$	
eral co	arbon- ate (CO ₃)	(3-2)							0,00		0*00	ER BAS			0,00	
ň	sium (K)	VLLEY							2 <u>5</u> 0,06		5,7 0,14	OLLIST			0.8 0.02	
	Sadium (Na)	PAJARO VALLEY							49 2,13		243 10.57	GILROY - B			18 0 <u>,78</u>	
	- engne muns (gM)								18 1.49		7.0 0.58				26 2.15	
	Calcium M (Ca)								25 1.25		18 0,90				31 1,55	
	F								7.,3		8.3				7.5	
Spacific	ence (micra- mhas at 25° C)		454	14000	683	7 02	687	585	549	1330	1370		484	467	448	432
	Temp Temp			60	66											
	Date sampled		5-21-64	8-12-63	8-14-63	9-26-63	5-20-64	9-26-63	5-20-64	9-25-63	5-20-64		6-17-64	6-17-64	6~17~64	6-17-64
State welt	number and ather number	MDB6M	12S/2E-18L1	12S/2E-30E1	12S/2E-31A1			12S/2E-32K1		13S/2E-6P1			9S/3E-25N3	10S/3E-1E2	10S/3E-23J1	10S/3E-26J1
	Owner and use			E. Yappert irrigation and domestic	Ranger damestic			Johnaon irrigation		F. Capurro & Sona domestic and	irrigation		T. Andrade irrigation	P. L. Hudson irrigation	J. Orlando irrigation and domestic	 H. Henderson domestic and irrigation

BLE		
TYH		

WATER	
GROUND	1964
Ч	<u>σ</u>
ANALYSES	

	State well		000	Specific conduct-					Mine	eral can	Mineral canstituents	ć	pointe	Ints per lants p	parts per millan equivalents per million	u		Tatol	į		1055	
Owner and use	number and other number	Date sampled	Temp in °F (ance (micro- mhos ot 25° C)	DH Hd	Calcium Magna- (Ca) sium (Mg)		Sodium P.	Patas - Carbon- sium ate (K) (CO ₃)	arbon- 6 ate b CO ₃) (i	Bicar- bonate (HCO ₃)	Sul - fote (SO4)	Chlo- ride (Ci)	NI- trate (NO ₃)	Fluo- ride (F)	Boran (B)	Silica (SiO ₂) Other constituente	als- solved eolids in ppm	to de la		as CaCO ₃ Total N.C. Ppm ppm	Anolyzed by
	MDB6M						G11.RC	GI ROY-HOLLI STER BASIN	STER B		(3-3) (C	(Cont.)										
Vowinkel domestic	10S/4E=17F1	6-17-64		700								<u>12</u> 0.25		8,5 0,14								
 B. Nichols domestic and irrigation 	10S/4E-18G2	6=17=64		494 7	7.6	39 1,95	2,33	18 0,78	0.02	0.00	214 3.51	26 0.54	$\frac{18}{0,51}$	22 0.35		0.1		289	15	214	39	DWR
Walter Henzi dom. and irrigation	10S/4E-18J1	6-17-64		447								17 0.35	$\frac{18}{0_*51}$	8.5 0.14		_						
D. Wolfe Irrigation and domestic	10S/4E-28D2	6-17-64		573 7	7.6	<u>30</u> 1.50	3,04	<u>31</u> 1,35	0.03	0*00	251 4.11	<u>32</u> 0.67	<u>39</u> 1,10	$\frac{14}{0,22}$		0.1		321	23	227	21	DWR
S. Armendariz irrigation and donvaric	10S/4E-34L5	6-17-64		7 06 7	7.5	48 2.40	3.04 1	42 1.83	<u>1.4</u> 0.04	0,00	<u>307</u> 5+03	<u>30</u> 0, 62	<u>39</u> 1,10	32 0.52		0.1		426	25	272	20	DWR
G. Howang irrigation	11S/4E=4Q3	6-17-64		927								_		84								DWR
Hugh Heraman İrrigation	11S/4E-8P2	6-17-64		517								12 0.34	8.7									
Mre. C. R. Lanini domestic	11S/5E-27M1	6=17-64		557 7	7.6	50 2,50	26 2,12	26 1,13	0.03	0,00	256 4.20	4 <u>3</u> 0.90	23 0,65	3.4		0.3		317	19	231	21	DWR
Ferry Morse Seed Co. irrigation	12S/4E=34P2	6-18-64		2160 7	7.5	220 10.98	79 1 6.50	139 6.05	3.1 0.08	0.00	488 8.00	424 8.83	244 6.88	$\frac{27}{0,44}$		0.5		1510	26	875	475	DWB
Olympia School domestic	12S/4E-35C1	6-18-64		1760								<u>354</u> 7.37				0*0						
M. Diaz domestic	12S/4E=36G1	6-18-64		2040	7.9	89 11 4.44 11	140 11.54	157 6.83	4.0 0.10	0.00	617 10,11	451 9,39	$\frac{96}{2,71}$	$\frac{1.8}{0.03}$		1, 2		1380	30	800	294	DWR
	12S/5E-20N1	9-18-63		4820 7	7.8		Im	779 37,30	11 0,28				1290 36, 38			1.2		2560	76	516		DWR
	12S/5E-28C2	9-18-63		2370 8	8.1			196 8.53	4.2 0.11				<u>210</u> 5.92			1.3		1650	31	948		DMB
	12S/5E-29G1	9-17-63	69	4330 8	B.4		3	726 31,58	12 0.31				1200 33,85			1.7		2330	78	434		DWR
	12S/5E-29G2	9-18-63		2000 8	e 8			258	4.6 0.12				<u>272</u> 7.67			1.3		1210	53	485		DWR
											_											

964	
-	

	P												_		
	Analyzed by		DWR	DWR	DWR	DWR	DWR	DVR	DWR				DWR	DWR	DWR
Hardness	N.C.				46	0	0	0	163					152	55
			850	353	779	66	88	333	471					346	248
Per-	too sod		37	73	30	5	54	72	37					67	6 47
Total	solved solids in ppm		1670	1680	1230	785	287	1380	928					931	600
	Silico Other constituents (SiO2)					_									
ļ	Silico (SiO ₂														13
u II	Boron (B)		1.5	1.3	1.0	1.5	0.8	3.0	0.8	0.9	0.8		0.2	0.2	0.2
parts per million squivolents psr million	Flug- rids (F)														0.01
parts per million volents psr mill	NI- trote (NO ₃)				7.6 0.12	$\frac{1.2}{0.02}$	0.8	0.4	9.2 0.15					3, 3 0, 05	0.01
squive	Chia- (CI)		<u>317</u> 8,94	426 12,02	<u>101</u> 2,85	<u>145</u> 4,09	$\frac{22}{0,62}$	469 13.23	122 3.44	<u>127</u> 3+58	<u>116</u> <u>3.27</u>		98 2.76	<u>344</u>	178 5.02
ats in	Sul - fate (SO ₄)	(Cont.)			227 4.73	67 1.39	$\frac{0.2}{0.00}$	109	273 5.68	<u>285</u> 5.93	<u>252</u> 5.25			39 0.81	29 0,59
nstituer	Bicar- banate (HCO ₃)	(3-3)			894 14.65	492 8.06	$\frac{219}{3,59}$	536 8.78	<u>375</u> 6.15			(3-4)		237 3,88	236 3+86
Minarol constituents in	arbon- ate (CO 3)	BASIN			0.00	0.00	0,00	0*00	0*00					0,00	0.00
Min	Potas - Carbon- sium ate (K) (CO 3)	ISTER 1	3.6 0.09	$\frac{7.6}{0.19}$	4.2 0.11	<u>2.5</u> 0.06	<u>3,5</u> 0,09	3.3 0.08	3.3 0.08			SALTNAS VALLEY		13 0.33	3.1 0.08
	Sadium (Na)	ROY-HOLLISTER	235 10.22	455 19,79	$\frac{154}{6*70}$	274 11,92	51 2.22	<u>397</u> 17.27	<u>130</u> 5.66			SALI		<u>160</u> 6,96	101 4.40
	Magne - sum (Mg)	GIL			<u>135</u> 11.12	<u>16</u> 1,28	12 0,96	<u>56</u> 4,61	78					42 3.42	28 2,30
	Calcium (Ca)				89 4.44	<u>14</u> 0.70	$\frac{16}{0*80}$	$\frac{41}{2.04}$	60 2.99					70 3.49	53 2.66
	H		8.2	8.4	7.9	8*3	7.9	8,1	7.9					8.1	8
Specific	ance (micro- mhos at 25° C)		2510	2740	1900	1330	415	2450	1440	1540	1420		924	1580	890
	Tamp in °F			65									68	65	69
	Date sampled		9-18-63	9-18-63	6-18-64	6-18-64	6-17-64	6-18-64	6-16-64	6-16-64	6-16-64		8-23-63	8-23-63	8-22-63
Stote well	number and other number	MD86M	12S/5E-29G3	12S/5E-29J1	12S/5E-33A1	12S/5E-36A1	12S/6E-7M2	12S/6E-31B1	13S/5E-3J1	13S/5E-1185	13S/5E-11G1		13S/2E-7Rl	13S/2E-17H1	13S/2E-19R1
	Owner and use				F. Freitas & Furtado domestic and irrigation	P. Rovella domestic and irrigation	Mrs. S. Brandon domestic and stock	C. T. Pillsbury domestic and irrigation	First Presbyterian Church domestic	Victor Lompo irrigation	V. Lompa irrigation		Monterey Bay Salt Co. domestic and industrial	Delfino & Calcagno irrigation and domestic	T. Leonardini domestic and irrigation

WATER	
GROUND	1964
OF	5
ANALYSES	

	Analyzed by	Τ		DHR	DWR	DWR	DWR	DWR	DWR	OWR	OWR	DWR	DWR	DWR	DWR	DWR		DKR
		<u>.</u>		228 0		0	0	289 0	0	0	0	121 D	0	6		5		Q
iar dnes	as CaCO 3 Total N.C.	_		364 2:		179	162	436 21	194	161		319 12	133		349 201	213		
	sod- Ium To	<u> </u>		35		55 1:	22 10	7 07	40 1	42 10		27 31	56 1:		29 3/	27 21		
Totol ,	salved solids in ppm	1		743		476	330	886	379 4	306		551 2	364		628 2	316 2		
	Silico Siloo Dihar canstituents																	
						37	32	33		32			36			27		
lion	Baron (B)			0.0		0.3	0,1	0,2	0.1	1.0		0,0	0.2	0.0	1.0	0,1	0.1	0.2
ports per million equivalents per million	Fluo- ride					0.1	0,1	0,01		0.1			0,1			0.2		
orts pe	Ni - trats			46 0.74		$\frac{1.3}{0.02}$	1.7	$\frac{0,8}{0,01}$	$\frac{3.1}{0.05}$	$\frac{0,8}{0,01}$		10 0,16	<u>2,1</u> 0,03		$\frac{1.4}{0.02}$	4.7 0.08		
bo	Chio-			<u>227</u> 6,40	<u>263</u> 7.42	$\frac{144}{4*05}$	$\frac{64}{1,80}$	$\frac{364}{10,25}$	78 2.20	60 1,69	6 <u>3</u> 1.78	<u>102</u> 2.88	<u>60</u> <u>1.69</u>	54 1.52	$\frac{167}{4.71}$	4 <u>3</u>	$\frac{61}{1,72}$	<u>39</u> 1,10
S	Sul - fote	18001	~	60 1,25		30 0,62	<u>17</u> 0,36	$\frac{62}{1,30}$	12 0.25	<u>15</u> 0.32		97 2.02	40 0.84		<u>105</u> 2.19	<u>18</u> 0,38		
Minerol canstituents	Bicar- banate	(HCO ₃)	(Cont.)	<u>166</u> 2.72		<u>222</u> 3.64	<u>228</u> <u>3.74</u>	$\frac{179}{2*94}$	$\frac{244}{4*00}$	<u>207</u> 3.40		<u>241</u> 3.95	3.60		$\frac{181}{2,97}$	230		
orol ca	arbon-	1,5001	(3-4)	0.00		00.00	4.8 0.16	0.00	0,00	8.4 0.28		0.00	<u>3.0</u> 0.10		00.00	$\frac{12}{0,40}$		-
Min	Patas-Carbon- sium ate	ì	ALLEY	3.8 0.10		3.1 0.08	2.4 0.06	4,5 0,12	3.0 0.08	2 <u>,5</u> 0 <u>,06</u>		<u>3.9</u> 0.10	2.4		4.5	<u>1.9</u> 0.05		
	Sodium (No)		SALINAS VALLEY	91 3.96	<u>160</u> 6.96	104 4,50	61 2.65	<u>135</u> 5.87	62 2.70	55 2,40	68 2 - 96	<u>56</u> 2.44	81 3.50	$\frac{64}{2.78}$	$\frac{66}{2,87}$	$\frac{37}{1.60}$		
	- angne sium	iAm)		36 2.93		$\frac{16}{1,30}$	$\frac{12}{0,99}$	50 4.06	$\frac{20}{1*64}$	$\frac{12}{1,02}$		2.23	$\frac{12}{1.00}$		$\frac{32}{2,68}$	$\frac{17}{1.39}$		
	Calcium (Co)			87 4.34		46 2.28	45 2.24	93 4,67	45 2.24	44		83 4,14	<u>33</u> 1,66		86 4.29	58 2.86		
	F			7.8		8,1	8,3	8.1	8.2	8,3		8.0	8.4		8.1	8,5		
Spacific	conduct- ance (micro- mhas	at 25° C)		1200	1290	770	545	1400	648	515	564	890	570	561	1050	500	627	587
	Temp In °F			65	99	70	69	63	73	62	12	66	73	65	68	62	62	64
	Date sampled			8-23-63	8-23-63	8-22-63	8-22-63	8-22-63	8-27-63	8-22-63	8-29-63	8-27-63	8-21-63	8-21-63	9~30-63	8-22-63	8-22-63	8-22-63
Stote well	number and athsr number		MDB6M	13S/2E-20R2	13S/2E-29C4	13S/2E-3102	13S/2E-31K2	13S/2E+31M2	13S/2E-32A2	13S/2E-32C1	13S/2E-32N1	13S/2E-33R1	14S/2E-6Q1	14S/2E-6R2	14S/2E-9K1	14S/2E-12Q1	14S/2E=14N1	14S/2E-15L1
	Owner and use			J. Tate domestic and irrigation	Permanente industrisl	J. J. King irrigation	Molers Estate domestic	E. Sallone irrigation	irrigation	0. P. Overhouse irrigation	Molera Estate irrigation	C. Rissotti irrigation and domestic	Mrs. L. Martin irrigation and domestic	E. Struve Irrigation	Darothy V. Orcutt irrigation	E. C. Eston irrigation	L. A. Wilder domestic	Monterey County Bank irrigation and domestic

	5 Anolyzed C. by		DWR	4 DWR	DWR	4.8 OWR	1 DAR	59 0WR	36 DWR	6 USGS	DWR	9 OWR	6 DWR		4.7 DUR	2 OWR
Hardness	al N.C. m ppm			0 24			3 361			7 176		1 319	7 396			540 302
	sod- sod- tum Total ppm			7 190		26 173	7 613	35 227	25 169	29 387		25 521	34 557		36 226	27 54
otal P	als- salved salids in ppm			378 37		300 2	1218 37	444 3	251 2	684 2		976 2	1120 3		422 3	978 2
	Silica Other constituents														Al 0.05 As 0.00 Cu 0.01 Pb 0.00 Mn 0.00 Zn 0.01 Phenol 0.004 Fe 0.36 (Totel)	
	Silica (SiO ₂)					33	29	36		48		13				
lion	Baran (B)		0,1	0,1	0.2	0.1	0.3	0.1	0.0	0.2	0.2	0.2	0.4	0.2	0.0	0.3
aquivalents per million	Fluo- ride (F)					$\frac{0,2}{0,01}$	$\frac{0,1}{0,01}$	$\frac{0.2}{0.01}$		$\frac{0,1}{0,01}$		0, 1 0, 01				
valents per mill	NI- trote (NO ₃)			<u>3,0</u> 0,05		0.8	10 0,16	4.3 0.07	2,0 0,02	0, 5		0,00	55 0,89		$\frac{15}{0,24}$	4.8 0.08
eduiva	Chia- ride (CI)		48 1.35	$\frac{69}{1,95}$	$\frac{172}{4.85}$	$\frac{18}{0.49}$	326 9.21	74	<u>15</u> 0.42	$\frac{76}{2*14}$	$\frac{37}{1.04}$	3.67	<u>127</u> 3,58		70	95 2,68
. <u>e</u>	Sul - fote (SQ ₄)	2		38 0,79		88 1.85	$\frac{235}{4,91}$	$\frac{73}{1,52}$	66 1.37	$\frac{217}{4.52}$		$\frac{314}{6,54}$	439 9.14	<u>292</u> 6,08	76 1.58	<u>348</u> 7.24
Mineral canstituents	Bicor- bonate (HCO ₃)	(Cont.		203 3.33		$\frac{147}{2*42}$	<u>307</u> 5,04	$\frac{197}{3,24}$	$\frac{162}{2.66}$	$\frac{257}{4,21}$		246 4.04	<u>196</u> 3,21		218 3,57	<u>290</u> 4.75
arol ca	arbon- ate CO 3)	(3-4)		0,00		$\frac{2.4}{0.08}$	0,000	3.6 0.12	0*00	0,000		0,00	0*00		0,00	0*00
Mine	Patas Carbon- sium ate (K) (CO 3) (VALLEY		$\frac{3.1}{0.08}$		2.9 0.07	5.3 0.14	2.8 0.07	$\frac{3.4}{0.09}$	$\frac{4.1}{0.10}$		4.7 0.12	$\frac{4_{*}9}{0_{*}12}$		3.5 0.09	$\frac{3.9}{0.10}$
	Sodium (Na)	SALINAS		$\frac{52}{2 \cdot 26}$		<u>29</u> 1,25	<u>167</u> 7.25	58 2,50	26 1.13	75 3,26		82 3, 55	134 5.83		59 2.57	95 4,13
	Magne- sium (Mg)			$\frac{18}{1,46}$		$\frac{13}{1,06}$	76 6.26	25 2,08	$\frac{13}{1,04}$	<u>57</u> 4.65		72 5,85	73		1,58	53 4.35
	Calcium (Ca)			47 2,34		48 2.41	120 6.01	50 2.47	47 2.34	62 3,09		92 4 • 58	103 5,14		59 2.94	129 6.44
	Η			8,1		8,3	8, 0	8.3	8.2	8,0		8.1	7.8		8.1	8.2
Specific conduct-	ance (micro- mhas at 25° C)		664	621	1090	440	1750	660	454	1010	674	1240	1610	1130	723	1370
	Tamp in °F		67	68	64	66	62	64	64	62	66	60	60	60		67
	Date sampled		8-23-63	8-28-63	8-28-63	8-20-63	8-22-63	8-19-63	8-24-63	7=63	8-12-63	8-13-63	8-1-63	8-1-63	5-25-64	7=29=63
Stote well	number and ather number	MDB6M	14S/2E-16Al	14S/2E-24E1	14S/2E-2581	14S/2E-35Q1	14S/3E-30E1	14S/3E-33G1	15S/2E=1A3	15S/2E-2Q1	15S/3E-4K3	15S/3E-701	16S/4E-24Al	16S/4E~25K1	17S/5E-1401	17S/6E~27K1
	Owner and use		John W. Orcutt irrigation	M. T. OeSerpa irrigation	M. T. OeSerpa irrigation	0. P. McFadden irrigation	A. Lanini irrigation and domestic	P. G. & E. municipal	irrigation and domestic	L. Jacks irrigation	irrigation	F. Glattinini domestic and irrigation	K. R. Nutting irrigation	J. C. Twisselman irrigation	Field Estates	N. Baker irrigation

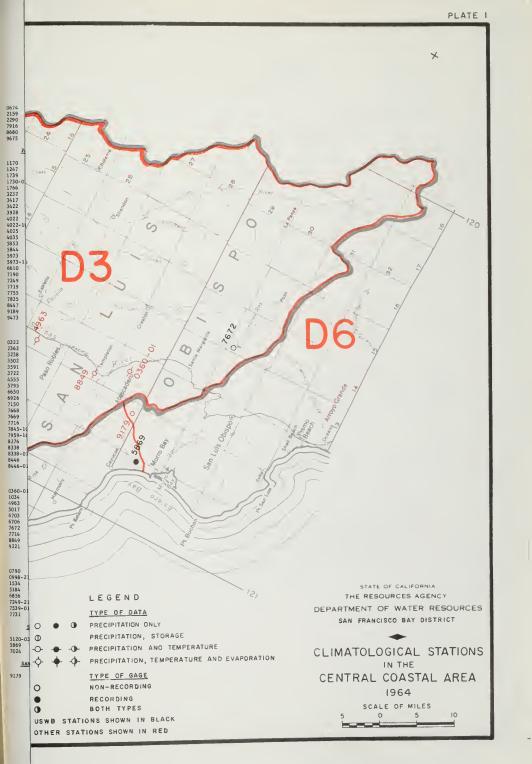
WATER	
OF GROUND	1964
ANALYSES (

-

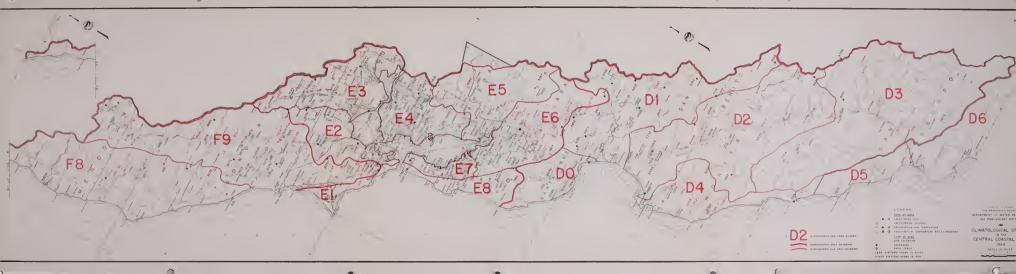
	Analyzed by			DWR	DWR		DMR	DWR	DWR	DWR	DWR	OWR	DWR	DWR	DWR	DWR	DWR	DWR
		N.C.			51 D			-	298 0	<u>а</u>			<u>م</u>	0				
fordnes	õL	Total N ppm p			255				536 2	511	541	4.32	257	778	203	168	172	144
	cent sod-				41 2				45		5	7	~~~~		5	1		
	solved solved				528				1210	1075	1020	870	480	1390	315	407	450	300
	Other constituents	(SiO2) Other constituents							A1 0.06 A8 0.00 Cu 0.00 P5 0.00 Mn 0.00 Zn 0.02 Phenol 0.003 Fe 0.01 (Total)									
	Silico	(Si 0 ₂)								3	70	48	47	34	777	45	47	40
LO LO	Boron	(B)		0.8	0.3		0.2	0.1	1*0	0.46	1.35	1.10	0.35	0.60	0.12	0.44	0.38	0,06
millon er mill	-	E)								0.6	0.5	0.4	0.7	0.7	0.8	0.7	0.4	0.5
ports per millon volents per mill		(NO ₃)			$\frac{10}{0,16}$	$\frac{77}{2 \cdot 17}$			0,01	<u>5.5</u> 0.09	4.0	7.5	$\frac{15}{0*24}$	<u>5.5</u> 0.09	24 0.39	6.4 0.10	$\frac{10}{0*16}$	10 0.16
ports per million equivolents per million	Chio -	(CI)		78 2.20	$\frac{38}{1*07}$	<u>322</u> 6.70	105 2,96	<u>163</u> 4.60	180 5.08	47 1+33	$\frac{145}{4*09}$	<u>3.19</u>	68 1,92	176	40 1,13	24 0.68	58 1.64	$\frac{43}{1+21}$
Li	Sul -	101e (SO4)			<u>156</u> 3.25				407 8.47	469 9.76	$\frac{294}{6*12}$	<u>188</u> <u>3.91</u>	$\frac{76}{1+58}$	475 9,89	$\frac{1}{0,02}$	42 0.87	38 0.79	$\frac{24}{0,50}$
Mineral constituents	Bicor-	bonate (HCO ₃)	(Cont.)		249 4.08		238 3.90	<u>3.93</u>	<u>290</u> 4,75	<u>320</u> 5.24	525 8.60	<u>522</u> 8,56	<u>303</u> 4.97	481 7.88	246 4.03	<u>304</u> 4.98	<u>272</u> 4.47	<u>176</u> 2,88
ral con	Irbon-	ofe (CO ₃) (((3-4)		0.00		0*00	0.00	0*00	0*00	0*00	0.00	0*00	0*00	0.00	0*00	14 0.47	0.00
Mine	otos-Co	(K) (C0 ₃) (ALLEY		4.4 0.11 0		10		4+8 0+12	5 0+13	4 0.10	3 0,08	3 0,08	3 0,08	2 0,05	3 0,08	$\frac{3}{0,08}$	4 0.10
	P molium	(N0)	SALINAS VALLEY		82 3+57		103 4.48	<u>77</u> 3,35	<u>178</u> 7.74	$\frac{140}{6.09}$	180 7.83	<u>165</u> 7.17	80 3.48	160 6.96	35 1.52	72 3.13	$\frac{96}{4_*17}$	$\frac{42}{1,83}$
	-	(Mg)			22 1.85				52 4,27	63 5.18	100 8*22	65 5+35	40 3.29	95 7.81	2.30 2.30	22 1.81	$\frac{21}{1.73}$	<u>10</u> 0.82
	alcium	(Co)			65 3, 24		<u>145</u> 7.24	<u>116</u> 5.79	<u>129</u> 6+44	101 5,04	<u>52</u> 2.59	66 3.29	$\frac{37}{1+85}$	$\frac{155}{7*73}$	<u>35</u> 1.75	$\frac{31}{1+55}$	$\frac{34}{1,70}$	41 2.05
-	H				8,1		8.2	7.9	8.2	7.3	7.8	7.8	7.6	7.4	8.1	8,3	8,3	7.6
Specific	ance (mlcro-	at 25° C)	_	1150	830	1180	1470	1260	1750	1462	1664	1404	814	1965	540	631	725	478
	Temp	0		63	68	60				74	66	70	68	62	99		68	72
	Date			7-29-63	7-24-63	8-29-63	5-25-64	5-25-64	5-25-64	9=23=63	9-24-63	9=24=63	9-23-63	9-24-63	9-24-63	9-24-63	9-26-63	9-26-63
Stota wall	number and other number		WDBGM	571	18S/6E-1E1	18S/6E-2N1	19S/7E-17P1	19S.7E-17Q2	205/8E-5R1	24S/12E-17L2	24S/15E-17F	24S/15E-33C3	25S/12E-16N1	25S/12E-28N1	25S/13E-19R1	25S/14E-33Q1	26S/12E-22P2	26S/14E-35D1
	Owner and	L Se		Mort Baker	L.M. & V. Jacka irrigation	L. Jacke irrigation	Kaiser stock	8. J. Marks domestic and irrigation	A. Durate irrigation									

	Anolyzed	by		DWR	DVR	DWR	DWR	DWR	DMR	DWR	DWR	DWR	OWR	DWR	DWR	DWR	DWR	DWR	DWR
\vdash																			
	Hardness as CaCO ₃	Tatai ppm		111	122	172	329	589	478	369	439	653	374	72	264	786	139	405	412
	Per-	POR III														_			
	dis-	solids solids in ppm		1370	265	1060	510	906	724	548	654	1084	620	410	390	3008	482	480	540
		Stitica (SiO ₂) Other constituents																	
		Silica (SiO ₂)		58	47	33	45	13	21	18	23	21	13	44	141	32	34	22	58
6		Borgn (B)		1.85	0.04	2.00	0.10	0.09	0,11	0.13	0.11	0.10	0,08	0,38	0.10	2.50	0.44	0*0	0*00
n millio		Flug- ride (F)		0*5	0.2	1.2	0*3	0.1	0.1	0.2	0.2	0.2	0.2	0.4	0.2	0.9	0.6	0.1	0.4
parts per million		hi- trate (NO ₃)		2.0 0.03	13 0.21	52 0.84	10	7.3 0.12	$\frac{3 \cdot 2}{0 \cdot 05}$	2.7 0.04	3.2 0.05	14 0.23	0*00	4.0 0.06	26 0.42	$\frac{22}{0,35}$	$\frac{12}{0,19}$	2.3 0.04	1 + 5 0 + 02
ā	adnivo	Chio- Chio- Ci (CI)		182 5.13	17 0.48	<u>107</u> 3.02	$\frac{104}{2*93}$	7 <u>3</u> 2.06	48 1.35	<u>30</u> 0.85	$\frac{41}{1.16}$	$\frac{62}{1.75}$	$\frac{38}{1.07}$	23 0.65	24 0.68	840 23 . 69	56 1.58	$\frac{22}{0,62}$	49 1.38
.c.		Sul - fote (SO ₄)	(530 11.03	<u>31</u> 0.65	<u>354</u> 7.37	15 0.31	<u>312</u> 6.50	$\frac{231}{4.81}$	$\frac{154}{3,21}$	$\frac{169}{3*52}$	352 7,33	<u>180</u> 3,75	$\frac{12}{0,25}$	$\frac{41}{0,85}$	927 19,30	60 1.25	136 2.83	<u>155</u> 3.23
Mineral constituents		Bicar- bonate (HCO ₃)	(3-4) (Cont.)	283 4.64	156	<u>339</u> 5.56	329 5 . 39	$\frac{32.4}{5,31}$	$\frac{311}{5.10}$	293 4.80	<u>314</u> 5,15	360 5.90	253 4.15	327	<u>305</u> 5.00	<u>290</u> 4.75	293 4,80	229 3 . 75	<u>327</u> 5.36
eral co		Potas - Carbon - R sium ate b (K) (CO 3) ((1	$\frac{24}{0.80}$	0,00	0,000	00.00	0.00	0.00	0,00	0.00	0.00	0,00	24 0.80	0*00	0*00	0*00	0*00	9 0°00
1 in		sium (K)	VALLEY	4 0.10	3 0,08	2 0,05	2 0,05	$\frac{1}{0.03}$	$\frac{1}{0,03}$	2 0,05	1 0.03	2 0,05	$\frac{1}{0.03}$	$\frac{2}{0,05}$	$\frac{2}{0,05}$	5 0,13	3 0,08	1 0.03	$\frac{2}{0,05}$
		Sadium (Na)	SALINA S	442 19,22	32 1,39	310 13,48	48 2,09	46 2.00	38 1.65	32 1.39	$\frac{37}{1+61}$	46 2.00	35 1.52	130 5.65	35 1.52	720 31.31	$\frac{110}{4*78}$	25 1.09	<u>38</u> 1.65
		Magne - sum (Mg)		5 0.41	4 0,33	$\frac{21}{1_*73}$	40 <u>3,29</u>	34 2.80	41 3.37	37 3.04	38 3.13	79	49 4.03	9 0.74	12 0,99	72 5.92	13 1.07	34 2.80	48 3 . 95
		(Calcium (Ca)		$\frac{36}{1.80}$	42 2.10	$\frac{34}{1,70}$	66 3.29	180 8,98	<u>124</u> 6.19	87 4.34	<u>113</u> 5,64	<u>131</u> 6,54	69 3.44	$\frac{14}{0,70}$	86 4.29	196 9.78	$\frac{34}{1*70}$	106 5.29	86 4.29
		F		8.4	7.8	7.9	8,1	7.4	7.8	7.5	7.4	7.6	8,0	8.4	7.7	7.5	8 . 6	7.7	7.8
Specific	conduct- ance	(micro- mhos ot 25° C)		2146	374	1634	822	1170	970	770	006	1210	770	653	635	4478	772	650	875
	Temp	с -		72	73	74	70	63	69	59	62	60	63	73	63	72	70	58	62
	Oate	eampied		9-24-63	9-26-63	9-26-63	9-26-63	7-10-63	7-10-63	7-10-63	7-11-63	7-11-63	7-10-63	9-26-63	9-25-63	9-25-63	9-25-63	7-10-63	9-27-63
	State well number and	other number	MDBGM	26S/15E-2N1	26S/15E-20N1	26S/16E-31B1	27S/12E-3C2	27S/12E-29P2	27S/12E-29P3	27S/12E-29P4	27S/12E-32C3	275/12E-32C4	275/12E-32Q1	27S/13E~9P1	27S/15E-10R2	27S/15E-13A1	27S/16E-23Nl	28S/12E-4J2	28S/12E-10R2
		Owner and use																	

œ	
WATER	
GROUND	1964
Ч	ō
ANALYSES	


	Anolyzed by			OWR	DWR	OWR	OWR	OWR	DWR		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
	N.C.									 	85	106			108	150		
Hordr	as CoCO ₃ Total N.C. ppm ppm			269	210	263	236	515	208	 	264	323			319	430		
	sod-									 	27	34			24	31		
Tatal	dis - solved solids in ppm			446	356	400	340	675	340		450	611			516	767		
	Silica (SiO ₂) Other canstituents																	
	Silica (SiO ₂)			20	18	22	17	24	35	 								
lian	Boron (B)			0.05	0*02	0*0	0*0	0.01	0°04		0.1	0.1			0.1	0.1	0.0	
ber mi	Flua- ride (F)			0.2	0.2	0.2	0,1	0.4	0.4									
ports per million equivolents per million	Ni- trate (NO ₃)			5.2 0.08	5.7 0.09	9.2 0.15	$\frac{6,8}{0,11}$	1.0 0.02	11 0.18		<u>1.1</u> 0.02	1.4 0.02			0.9	0.3		
equive	Chlo- ride (CI)			28 0, 79	$\frac{22}{0,62}$	20 0,56	20 0.56	$\frac{66}{1.86}$	24 0.68		$\frac{62}{1,75}$	3.55	57 1.61	$\frac{13}{0_*37}$	$\frac{51}{1,44}$	<u>131</u> <u>3,70</u>	$\frac{51}{1.44}$	<u>39</u> 1.10
ls in	Sul - fate (SO ₄)		3	75	64 1.33	85	$\frac{69}{1_*44}$	178 3.71	<u>102</u> 2.12		96 2.00	$\frac{106}{2 \cdot 21}$			128	<u>170</u> 3.54		
Mineral constituents	Bicar- banate (HCO ₃)		(3-4) (Cont.)	244 4.00	3,13	$\frac{210}{3,44}$	$\frac{217}{3*56}$	$\frac{451}{7,39}$	168 2.75	 (3-7)	218 3.57	265			$\frac{257}{4,21}$	<u>342</u> 5.60		
ieral co	Carbon- ate (CO ₃)	VALLEY		0*00	0,00	0.00	0,000	0.00	0.00		0.00	0*00			0.00	0*00		
ž	Patos-Carbon- sium ate (K) (CO ₃)		$\frac{1}{0*03}$	$\frac{1}{0.03}$	$\frac{1}{0.03}$	$\frac{1}{0,03}$	$\frac{1}{0,03}$	$\frac{1}{0.03}$	CARMEL VALLEY	$\frac{4.6}{0.12}$	4.9 0.12			$\frac{2 + 6}{0 + 07}$	<u>5.0</u> 0.13			
	Sodium (Na)		SALINAS	$\frac{26}{1,13}$	$\frac{27}{1.17}$	$\frac{20}{0*87}$	$\frac{24}{1,04}$	$\frac{60}{2,61}$	$\frac{35}{1+52}$	CA1	$\frac{47}{2.04}$	79 3.44			48 2.09	$\frac{92}{4*00}$		<u>37</u> 1.61
	Magne - sium (Mg)			35 2.88	$\frac{23}{1,89}$	33 2.71	$\frac{27}{2.22}$	70 5.76	22 1.81		22 1.78	25 2.06			$\frac{23}{1,93}$	29 2.40		
	Calcium (Ca)			50 2.50	46 2.30	51 2.54	50 2.50	91 4.54	47		70	88 4.39			<u>89</u> 4.44	124 6.19		
	Æ			8.0	7.7	7.7	7.5	7.7	7.9		8.1	8.1			8.0	8°.2		
Specific	ance (micro- mhas at 25° C)			570	767	240	530	1117	541		735	1000	708	326	812	1200	650	584
	Temp in °F			62	62	19	61	99	62	 	62	61	62	75	9	66	61	61
	Date sompled			7~9-63	7-9-63	7-10-63	7-10-63	9-27-63	9-25-63		8-7=63	₿≈7≈63	8=7-63	8-7-63	8-7-63	8=7=63	8=7-63	8-29-63
State well	number and other number		MDB6M	28S/12E-14J2	28S/12E-24F2	28S/12E+2581	28S/12E-25B2	28S/13E=31R2	28S/16E-14N1		16S/1W-13L1	16S/1W-13L2	16S/1W=13R1	16S/1E-16L1	16S/1E-16N1	16S/1E-17G1	16S/1E-18K1	16S/1E-18P1
	Owner and use										R. Odeilo irrigation	Carmel Sewage Treatment Plant industrial	B. Odello irrigation		E. Høber Irrigation	Harbert trigation and domestic	irrigation	8. Odello irrigation

	pez		
	Anolyzed by	84 	
ness	os CoCO.3 Totof N.C. ppm ppm	63	
		178	
	trans sod-	53	
Totol	solved solved in ppm	324	
	Silica (SiO ₂) Other constituents		
	Silica (SiO ₂)		
Lion		o <mark>.</mark>	
Der millio	Fluo- ride (F)		
ports per million equivolents per million	NI- F trote (NO ₃)	e.[6].	
d	Chio- ride (CI)	86.0 99	
e s	Sul - fota (SO ₄)	ont.)	
Minarol constituents in	Potos - Carbon Bicor- sium ofe bonote (K) (CO ₃) (HCO ₃)	(3-7) (Cont.) 135 2,21 1,92 1,92 1,92	
narol co	Carbon- ote (CO 3)	0.00 0.00	
W	Potos - sium (K)	0,000	
	Sodium (No)		
	Calcium Magne- (Ca) (Mg)	11,26	
	Colcium (Co)	46 2.130	
	됩	7.8	
Specific	ence (micro - mhos of 25° C)	537	
	Tamp in °F	<u>8</u>	
	Oofe sampled	0 9 9 8	
Stote well	number and other number	165/1E-2581	
	Owner and use	5. Holt irrigetion	


RADIOASSAYS OF GROUND WATER

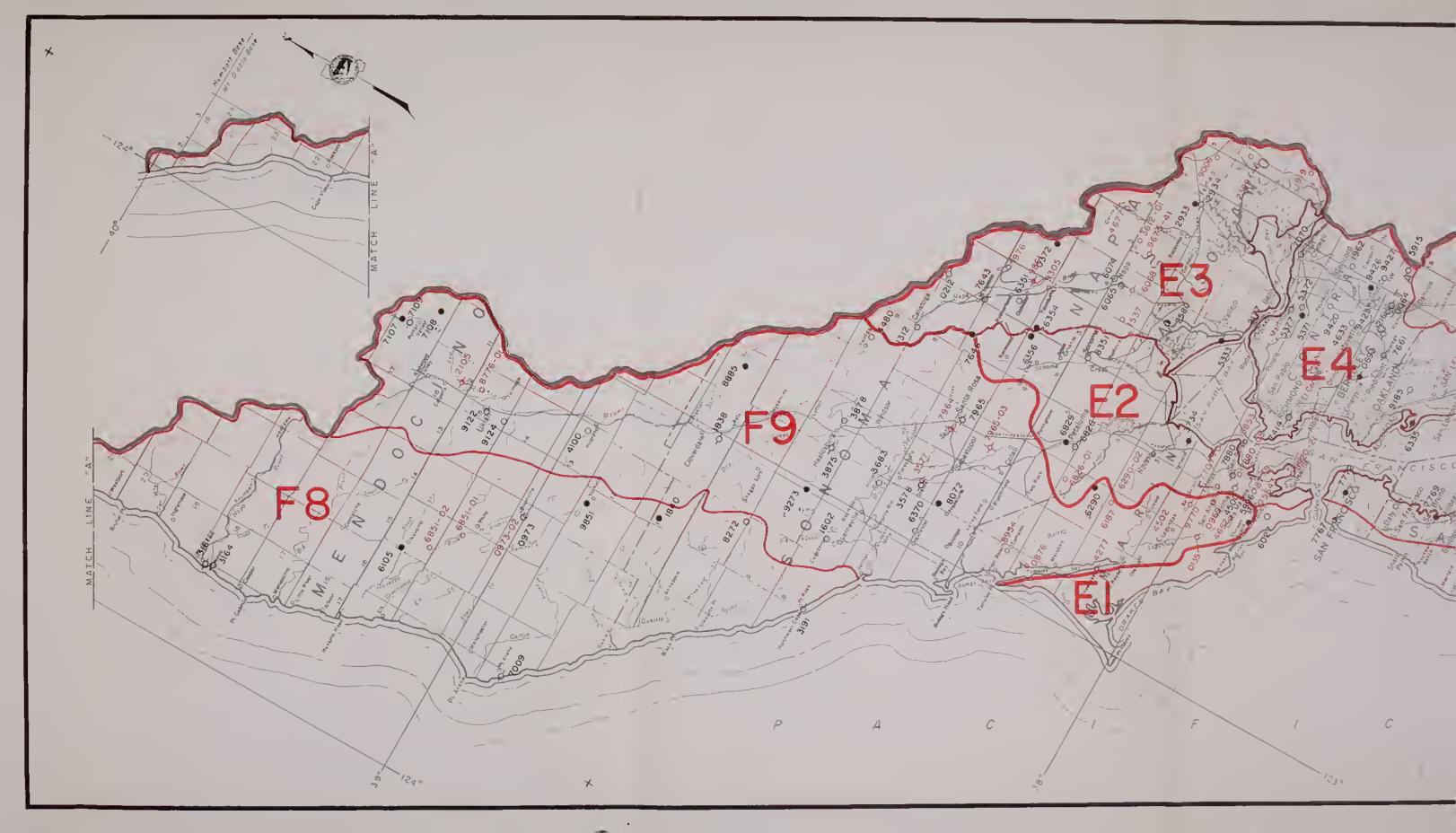
	GROSS	ACTIVITY		4.6 + 4.6							
PER LITER	ACTIVITY	BETA			1.6 ± 6.0	1.1 ± 6.0	11.57 ± 12.77	4.2 ± 5.9	0 ± 6.1	0.0 ± 2.61 -19.35 ± 12.33	
RADIOASSAY IN PICO CURIES PER LITER	DISSOLVED ACTIVITY	ALPHA	ay)		0 + 0.5	0.1 ± 0.4	-2.12 ± 0.91	0 <u>+</u> 0.5	0 + 0.4	0.0 ± 2.61	
RADIOASSAY	ACTIVITY	BETA	EY 2-9 (East B		1.9 ± 6.0	0 + 0	-4.16 + 7.57	7.0 ± 8.0	0.44 ± 6.1	-7.37 ± 8.42	
	SUSPENDED	ALPHA	SANTA CLARA VALLEY 2-9 (East Bay)		0 + 0.5	0 + 0.3	-0.10 <u>+</u> 0.80	0 + 0.5	0 + 0.4	0.70 ± 1.05	
DATE	ANALYZED		S	11-12-63	1-8-64	3-17-64 3-16-64		1-9-63 1-8-64	3-17-64 3-16-64		
DATE	SAMPLED			9-5-63	12-5-63	3-10-64	6-12-64	12-5-63	3-10-64	6-12-64	
	WELL, NUMBER			4S/1W-21F2	4S/1W-21F2	4S/1W-21F2	4S/1W-21F2	4S/1W-21P6	4S/1W-21P6	4S/1W-21P6	

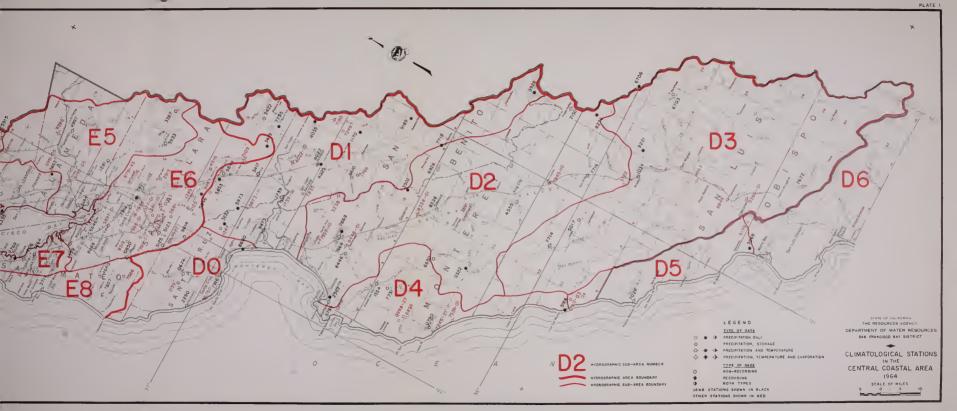
CLIMATOLOGICAL STATIONS

	SANTA CRUT COAST (No. DO)	
0634	Ees Lonord	6027
159	Creat Ranch	0011
2290 7916	Developer: Secte Cruz	
1640 1015	Sumant Beach State Park Wilder Ranch	0734 4100
		5647
Pat	ARD-SAN BENITO AIVERS (No. DI)	6290-02 6356
170	Bueca Vieza	6826
247 139 130-01 266 232	Buzzard Lagoon Chittenden Pass	6826-01 6829
:30-01	Colttenden	\$833
232	Clensge Freedom 8 RNN	3303+01 3850
41)	Gilroy	1030-08
422 422 428	Gilroy Gilroy 14 EXE Estrandes 7 SI	6351 8779
022	Hirtoy 14 EAL Earnandes 7 SI Bollister Bollister Goste Eollister 10 ZNI Rotlister 10 ZNI Forsan Hill 505	8920-21
023	Edilleter So. 2	
035 553	Hotlinger 10 ZNE	0212
544		0372
973 973-11 610 190	Porgao Bill J E Moust Hadonna Mt. Madonna Co. Park Paitines Dirveil Ranch Quien Sabe - Bay Camp Bancho Quien Sabe	1312
010	Pairines Ohrwall Banch	1915
190 249	Quien Sabe - Hay Camp Rancho Quien Saba	1976
110	San Benlto	2580
249 149 755 835	San Bealto San Felipe Highway Station San Felipe Highway Station San Juan Bautiata Missico	2933 2934
	Sprecials Hill-Laguns Secs Upper Tres Pinos	3612+01 4677
189	Varionville Varet Works	5333
10		5055 5068
	WER SALENAS LIVER (So. 02)	6074
322 362	Arroyo Seco Del Honte	6031 6054
230 502	Fremont Peak State Park	7643
593	Gonzales 9 252 Greenfield Bater	764.6 9006
722	Sames Valley King City	9305
205	Man Pur aw	9675-41 9861
530	Falons	
\$25 150	Picnatles Mailonal Mon, Priest Valley	
65 B	Salinas 2 E	0064
lin .	San Ardo	1216
919-10	Sao Lucas Guidici	1962 2177
276	Slack Cargon	3692
339-01	Soleded Soleded CDF	4633 5371
11 (j - 11)	Spreckals Hoy, Bridge	5372
149-0i	Spreckelv	5377 3913
<u>ñ</u> b	PER SALDRAS EIVIE (No. DJ)	1010 525a
364-04	Acascadero 195	74.14
034 953	Eradley Lizz Repch	76 b1 9185
017	Locarrood 2 5	9430
703 705	Parkfield Parkfield 7 8550	9423 9428
172	Saitnas Dan	9427
714 349	San Antonin Hission Templaton	
223	Valleton	1781
	MONTEREY COAST (No. D4)	JJ8) 4996
790	Blg Sur Stote Fark	6997
498-27 134	Fourbers Cap Carmet Valley Lucis Villow Springs	5933
534 LB4 855	Lucis Villov Springs	6159-03
535 245-21	Pico Sianco 8,5, Camp Rancho Lino	6841-05
\$19-01	Lucis Villow Springs Pito Sianco E.S. Camp Bancho Rico Rostevult Eanch San Clements Dam	
		0053
	LUIS ONISPO COAST (No. 05)	0125 0705
120-03	Los Burros Morro Bay 3 B	0830
819	Morro Bay 3 B	1285

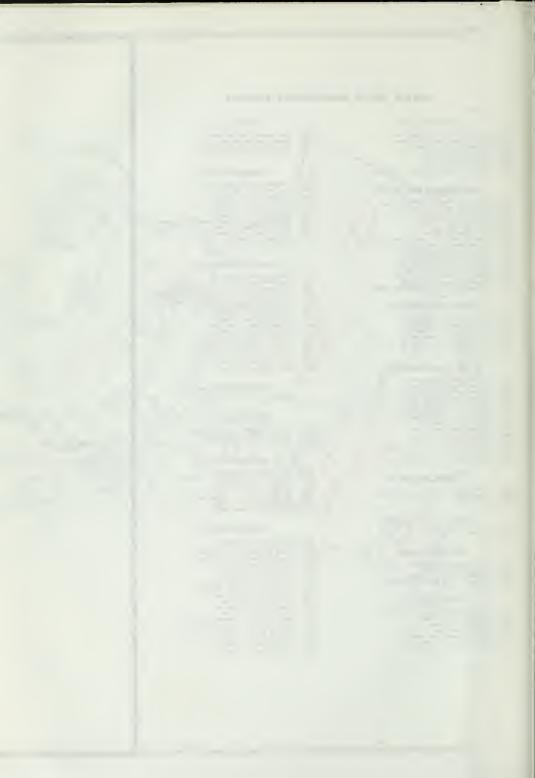
024	Polot	Pledrag	BINNERS	

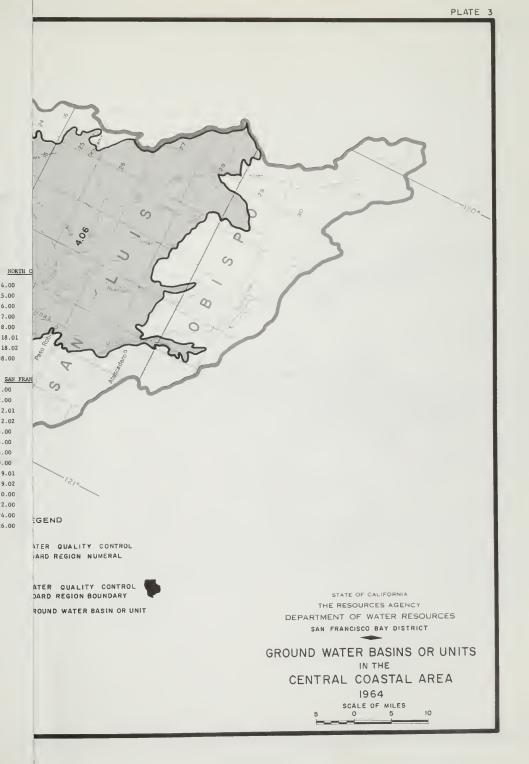
SANTA MARIA-CUTAMA RIVERS (No. D6)

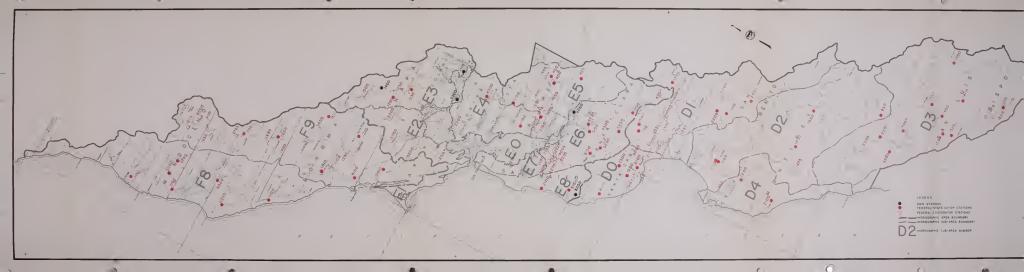

1175 Upper Moreo Creek


	COAST-MARIN (No. EI)
6D27	Mair Woods
	MARIN-SONOMA (No. 22)
0134 4100	Smilton A,F,B, KeptSlaid
5657	Mill Valley
6290-07 6356	Novato Firm House
6826	Fatalone F. S. No 2
6826-01	Oshville A SV No. 2 Pataluma F. S. No. 2 Fecaluma - Surma Pataluma - N
6829 6833	Phone I Fisher Data
1101-01	San Answino San Balaol San Balaol Nat Benj
7830-08 7830-08	San Rainel Not Rock
6351	Booten
8779	Temalpate Valley Itburgh-Tophes
8920-21	
	HAPS-SOLAND (No. 23)
0212 0372	Angwid Fac. Union Col Atlan Roat
1312	Calterona
1915	Collinsville
1976	Comn
2309-45 2580	Denverton 1 5 Dutions Landing
2933	Fairfield
2934	Fairfield Folics Sta.
3612-01	Grees Vulley Lako Curry
5333	Lake Curry Nate Island
5055 5058	Паре Наре Начол
6074	Nape State Hospital
6331 6354	Galvilla 1 MOW Galvillo 5 EW
7643	Saini Heinne
7646	Saint Helens 4 WSW
9006 9305	Travis Air Porce Base Veterana Bome
9675-41	Viid Sorse Velley
9861	Youptville Gamble
	BAST LAT (No. 84)
0064 0693	Alamo 1 M
1216	Berkeley Burton Manch
1967	Concord 3 E
2177 1863	Crocketi Hermand & TSP
633	Lalayelte 2 Mil
5372	Hayvard 6 ESE Lalayrite 2 MHZ Marillari 3 S Marillari 3 SE Marillari 1 SSE Marillari 1 SSE
5377	Martines Fire Scation
3913	Nt. Dieblo North Gate Dakland VB AF
1010	Dailand VB AF Fort Chirago NAD
3414	Fichmond
76 61 9185	Salot Mary's College Opper San Leandro Filters
94 3 0	Watser School
9423	Veiser School Velnut Crart I ISS Velnut Crart I INE
9420 9427	Valnut Crass I DRE Valnut Crass 4 g
	ALAMEDA CREEK (No. 15)
1781	Chimyntes Reservoit
338) 4996	Gerber Ranch
6990	Livermore Severe Fight Livermore 2 SSW
5933	Mt. Hesilton
6144 6159-03	Newari Niles 5, F. Depoi
5941-05	Pleasanton Hursery
-	SANTA CLAIA VALLEY (80. 25)
0053	Atustics Fars. Fond
125	Almadeo Reservoir
030	Bearyasta 1 E (Toyon Svs.) Black Houstain 2 SV
285	Catero Reservoir
1341-10	Cambrino Fart Campbell Water Co
1109	Coyota Reservoir
2919	Evergreen-Stiver Co. Rd.

3681	Constant on a first or second of
2010	Guadelupe Reservoir Leroy Abderson Dam
4122	Lexigton Reservoir
5123	Los Gatos
5123-04	Los Catos-Old Orchard Ed.
5135	Los Cetos & SW
3846	Norgen Hill & VNV
\$897-01	ML. Viev T. S.
66-66	Palo Alto City Hall
6791-63	Penilencia Raio Ge
7339	Ledwood City
7821	San Jose
28.58	5an Jose Derld. P. F. 1
7912	Secta Clarg Volversity
3439-01	Saratoge-Clarks
7998-03	Saratoga-Kriege
8068	Snaroville Lake
8519	Slovens Creak Reservoir
9210	Vasona Reservoir
6917	Wrights
	BATSIDE-SAN MATEO (No. E1)
1206	Buritozame
1109	San Francisco W6 AP
7172	San Francisco Fed. Office I
7864	San Mateo
	COAST-SAS NATED (No. 85)
3716	Helf Hoon Bay 2 3052
4560	Le Bonda
7085	Portola State Park
7767	San Francisco Richmond Sunt
7807	San Gregorio 3 SE
	MENDOCISO COAST (No. FB)
0973	Boomytiin HHS
0973-02	Bouny111s-Ferrer
1840	Clovardale 11W
3161	Port Brokg
3164	Fort Bragg Awlariou
0191	Fort Loss
6105	Neverto 1 HW
6551+01	Philo 2 NV
6851-02	Philo 4 NF
7009	Point Arene
6172	Skaggs Spr. Las Lonas Hanch
9851	Yoriville
	RUSSLAN ALVER (No. F9)
0135	Alpino Dam
6876	Blacks Lending
0969	BOD Repr Dam
1603	Caradoro
18)2	Cloverdale 3 55E


SANTA CLARA VALLEY (No. E5) Cont'4


0224401	LUIIO 4 UM
6851-07	Philo 4 NV
7009	Point Arene
6172	Skaggs Spr. Las Lonas
9651	Yoriville
	RUSSIAN ALVER (No. FS
0135	Alping Dam
6816	Blancs Lending
D969	BOD It yr Dan
1603	Caratero
18)8	Cloverdale 3 55E
\$105	Copore Dam-Lake Mends
3577	Graton
3518	Graton I V
3683	Guernevilla
3675	Braldsburg
36/8	Realdsburg 2 E
4100	Bopland Largo Station
4277	Townshees Mery
4680	Raitogr
4502	East Lake
4652	Legualter Late
5996	Nt. Temalpats 2 SV
6187	Streeto
6390	Novato 6 WWW
e)10	Occidencel
7107	Potter Valley 3 KNV
7105	Potter Valley 3 KNV Potter Valley 3 SZ
7105	Potter Vallay P. H.
7645	Salar Halena & WSW
1966	Santa Ross Severo Pla
7963	Sansa Rosa
7965-03	Sauca Roma Pedranalos
8015	Sebaatopol 4 551
0776-01	Tatmoge
2883	The Goysnes
8754	Tomales
1122	Միլած
5134	Think the WSW
5273	Venado
#77Q	Woodacra



-

SURFACE WATER MEASUREMENT STATIONS

SAUTA COUR (00, 10)

- 1100 Branciforts Greet et Bante Gruz 1200 Ban Gorenzo River et Big Tress 1300 Zegnote Greek et Enyente 2100 Agivo Greek et Enyente

- 3107 Baguel Crash el Soquel 3107 Saquel Crash Vest le or Sequel 4170 Scott Cr. shove Little Cr. or Sesamort

PAJARO-DAS LESTO REVERS (No. 01)

- 1173 Correllion Great at Preedum 1130 Correllion Great or Correlite
- 1310 Fajaro Miror nr Gilley 1331 Bodžiab Crark nr Gilrey

- 1540 Liegan Grook er Korgan H333 1860 Ban Faltge Labn er Her Pellge 1870 Pacheco Grank ar Dunneyl330

- 1610 Fachaco Crank az Junamvilie 130 Geder Crank az Junamvilie 2000 ber Bosilo Birer mz Hellin 1300 Tites Binos Grank nz Trek Bires 1340 Faspalago Crank oz Palytane 2340 Faspalago Crank oz Millow Crank bežodi

LOWER GALLMAN REVER (IN. D.2.)

- 1100 B) Tory Crewb on Sprachula
- 1320 Baltnes Hivet nr Dprocholo 1430 Dernyo Seen nr Baladad
- 1615 Agroyn Seco ar, Grandiaid 1640 Ban Loronav Ce ur blog City 1850 Julines hiver av Bradlay

DIFFR SALINAS LIVER (Bo, DJ)

- 1200 Entralla biwar or Estimila 1300 Cholme Crash nr Rhamion 1400 Heertawrd Crass or Crasson 1430 Feilmer Biwar al Fase Reblas 1430 Jash Crash nr Trepleton

- Boota Hits Graeb nr Tampieten Salinan River skove Pritses Graeb Furo Graeb nr Fuso
- 1775 Balinge Kasarwate of . Perso 1850 Balinge Miret un Perso
- 1700 San Agionio Elizzi el Piejico 3220 San Antonia E al San Jonus Bridge
- J200 Recimiento Elver nr. 413000 3450 Hacimiento E balow Recimiento Imm

MENTTERITY COAST (Re. 14)

- 1050 Cormal Niver or Cormal 1200 Cormal Niver of Robles 662 Tio 2100 Nij Bur Niver of Sij Sur

SAA PRANCISCO BAL (No. 60)

3300 Sitem Ser at Seciala

MARIN-BURNA (No. 1)

- 1305 Goris Hadsta Greet ei Leus 3305 Supeto Greek mr. Borete 3300 Fitalume Greek mr. Petelame 8350 Femma Greek al Bores Het Lyringe

(1) , (4) CHAND (1) , (1)

- 1110
 Sectoments Bives at Golljeeville

 1000
 Eadwood Grash mr. Hape

 1200
 Hape Mirst mr. Hape

 1300
 Dry Grash ar Hapa

 1400
 Hapt Hirst mr. Hape

 1400
 Hapt Hirst mr. Hape

 1400
 Hapt Hirst mr. Hir Helens

\$150 fan Lamon Cranb at Ban Lamon STAPETA CHEER (BU. CS)

LAST MY (M. 14)

1050 Alamada Grave at Union (Fiy 1076 Dry Gravk at Dates fiy 1150 Alamada Gravi at Biles 1350 Arrays Vella at Platesator 1460 Arrays Vella at Platesator 1410 Arrays Vella at Electronics 1410 Arrays Vella at Diseasons

1100 Ban Lorense Criek of Harverd 1200 Ehomo Crast at Suz Robin 1300 Valmut Crast at Kalout Crast

- 1633 Arrays Valle above Long Compon of . Listmate
- 1440 Atraya Mocho E/o Liveimire 1450 Seroya Nocho az Liveimire
- 1650 Ken Antonio Crank at Sumol
- 1100 Rakadara Crash at Palo Sito 323 San Fractowynit: Ct. el Savdorff Onix 2333 Les Practowynit: Ct. el Savdorff Onix 2353 San Franciaguito Ct. Thit er Ricolext Duix 2235 Ran Franciaguito Ct. below Laders Dun Elta ACO Arcorpo de los Garles et Rifplias 6350 Caryota Canad nr Hadrinan 6500 Caryota Ctark ur Giltery 5100 Sersiogs Crant at Faratogs 5150 Guadalupe Eirer at San Jone 5250 Los Cacas Grash at Los Gelve 3430 Almoltos Greek nr. New Almodeo 9005 Redwood Cruss as Redwood City
- WOLD Bharow Crock or Music Forb
 Still Upper Funiterin Gr at San Jana
 Boss Croop at Ban Jana

MATELOG- SAN MATTIN (M.

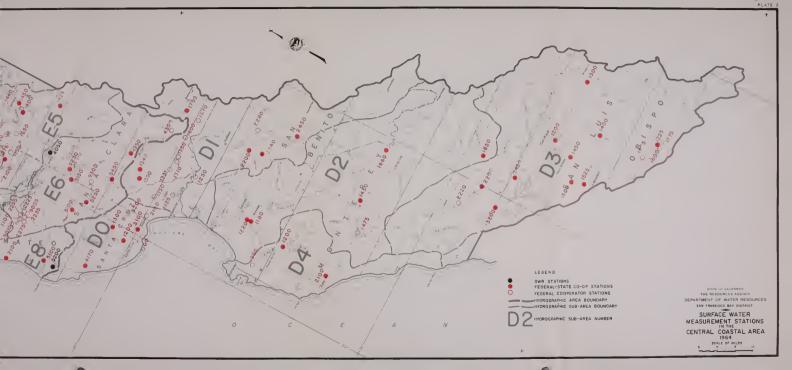
3500 Golma Crish at So, Fan Pracelsco

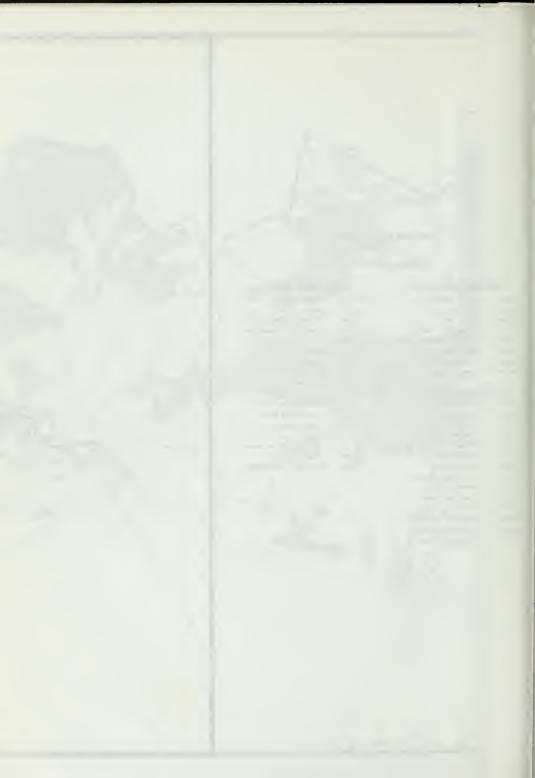
COAST-BAR MASTO (BO, EI)

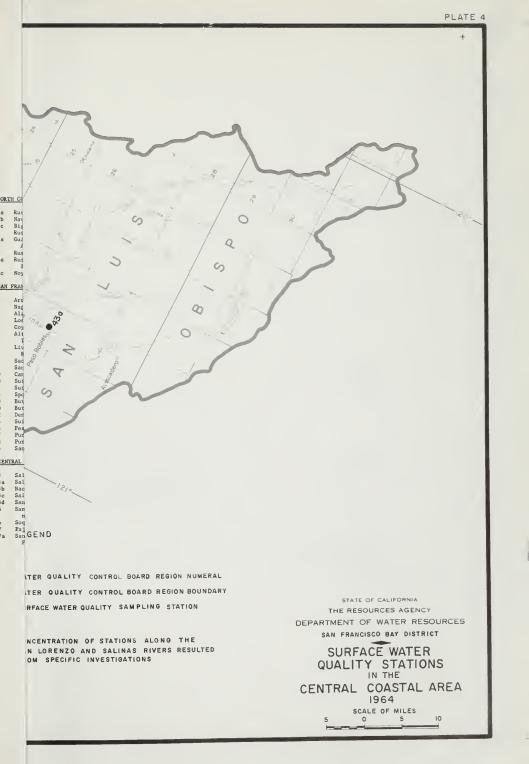
3200 Bulano Cresb ur Pascadaro

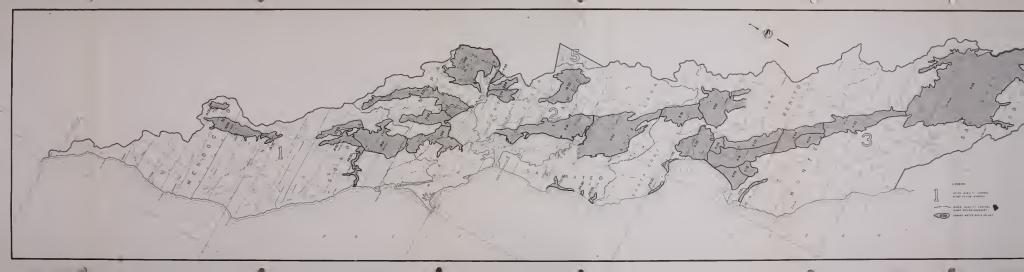

HEREADCING COAST (No. FI)

COSO Albive Blows as Comptole 1100 Genelais Blows, Mar. Ta an Anapolic 3000 Benesco Blows as Benesca 3000 Anasharia Crash nc. hannarilla 3000 Alg. Blows, So Ph. nc Complete 3000 Anyo Elevet as Fort Long 4000 Corria Blows, Forth Long 4000 Corria Blows, Forth Long 4000 Corria Blows, Forth Long 4000 Corria Blows, Forth Long 4000 Corria Blows, Forth Long 4000 Corria Blows, Forth Long 4000 Corria Blows, Forth Long 4000 Corria Blows, Forth Long 4000 Corria Blows, Forth Long 4000 Corria Blows, Forth Long 4000 Corris Blows, Forth Long 400 Corris Blows, Forth Long 400 Corris


PULALAR PAYER (My. FT)


- JOIO Aussis Cress ar Consisto 100 Exector Read of Commercials 1370 Easts Alles Creat of South Essa Lagane de Seole Rose nr. Greise Lucelan hlive nr. Meslásburg 1440 Dry Crosb or Corserville 3490 Dry Crosb on Clousedole 1490 Dry Creek en Clorensiste 1320 Neuroma Creek urs Tableag 1400 Sig Balghaur Creek ar. Clorentale 1430 Russien Hiere an Clorensiale 1330 Polis Craek en, herjond 1433 Russian Hiere ur Heyland 1435 Russian Hiere ur Heyland 1436 Russian Hiere ur Heyland 1430 Polis Craek en Lauden Valles 1430 Polis (Poling P. R. Seil Ree er Polis V. 4301 Besaler Hiver, 5 Fork ar Dilah 4700 Bassian Bises, 5 Pork ar Calpelle 9010 Velker Creek or Tamaler
- #150 Salmas Crash at Bodays Bay


2100 Partaison Caush at Union City SANTA CLARA VALLEY (av. RA) \$100 Haunders Creek at Palo Site



- 1130 Correllion Greek or Correllian 1330 Pajaro hiver or Chillandeo 1350 Dups Crisk mr. 611rsy 1350 Dups Cr. above Usin Ann. mr. Horgan 8133

GROUND WATER BASINS OF UNITS

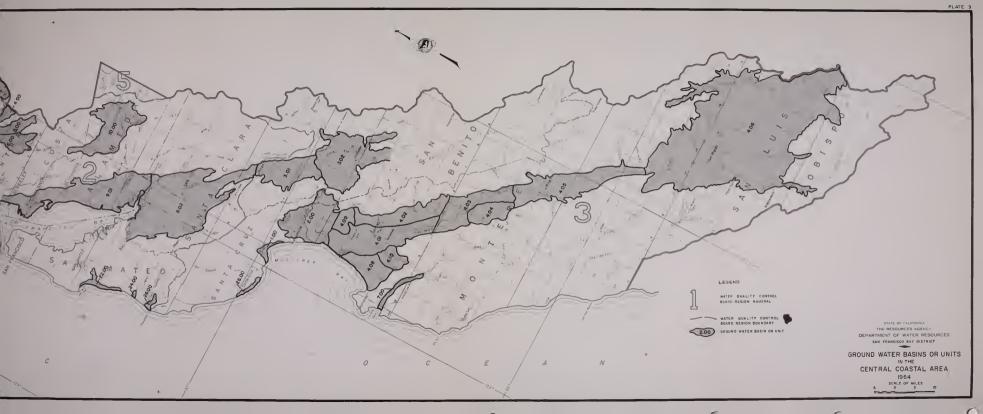
IN THE

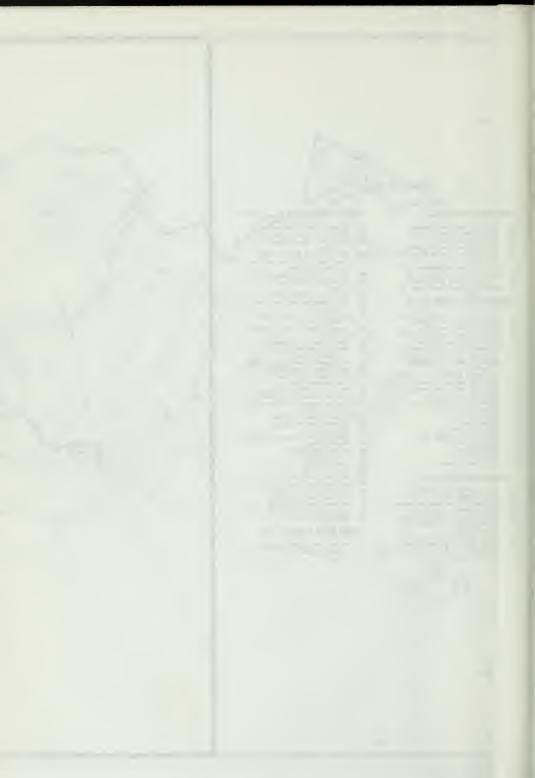
CENTRAL COASTAL AREA

NORTH COASTAL REGION (No. 1) CENTRAL COASTAL REG

2-24.00 San Gregorio Velley 2-26.00 Peacadero Velley

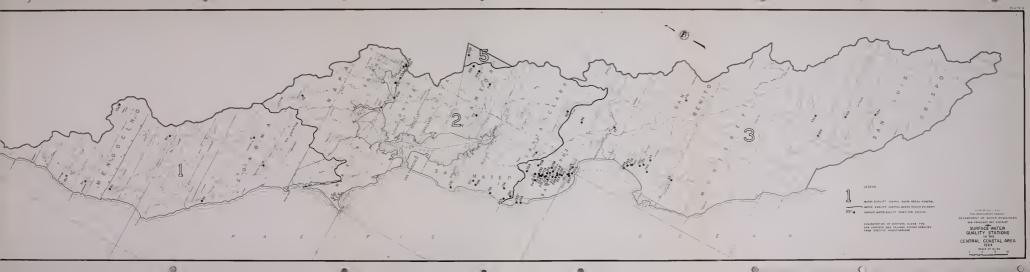
.00	Potter Valley	3-1.00	Soquel Vella
i.00	Uktab Velley	3-2.00	Pajaro Vella
.00	Senel Valley	3-3,00	Gilroy-Holl
00	Alexander Valley	3-3.01	South Sect
00.3	Secto Rose Velley	3-3.02	64a Senito
8.01	Santa Ross Ares	3+4.00	Salinas Vali
8.02	Mcoldeburg Area	3-4.01	Pressure As
5.00	Lovat Russian River Valley	3-4.02	East Side A
		3-4,03	Forebay Are
SAN FRANCISCO BAY REGION (No. 2)		3-4,04	Acroyo Seco
00	Petoluma Volley	3-4.05	Upper Valle
00	Naps-Sonoms Velley	3-4.06	Pago Robles
.01	Nape Valley	3-4.08	Seaside Are
.02	Sonoma Velley	3-4.09	Langley Are
00	Suleun-Fairfield Valley	3-4,10	Corral de 1
00	Clayton Volley	3-7.00	Carpel Valle
00	Ignatio Valley	3-26,00	West Santa (
00	Sente Clare Velley		
01	East Boy Area		
- 02	South Bay Area		
.00	Livermore Valley		
.00	Half Moon Bay Terrace		


GION (No. 3)	
ley	
ley	
lister Velley	
ta Clara County	
County	
lley	8.8
Area	
Ares	et et
rea	8/2°
co Cone	×.
ley Ares	12.00
n Besin	
0.0	
tea.	
Xierra Area	
ley	
Cruz Terrace	
	SF Y Y
	a


 \mathbf{C}

0

-



SURFACE WATER QUALITY STATIONS

SORTH COASTAL REGION (No. 1)

- 6a Rossian River Dest Hopland 2b Neverto River noar Neverto
- Sig River near south
- Russian River neor Healdeburg
- 9e Cualala River, South Fork, neat Annapolls
- 10 Russian River at Guerpevtils 10s Russian River, East Fork, at
- Potter Valley Power House 10c Noyo River near Fort Bragg
- SAN FRANCISCO BAY REGION (No. 2)

- Arroyo Del Velle near Livermore Napa River near 5t. Helena
- Alameda Creek naar Niles Los Gatos Creek pear Los Gatos
- Coyote Creek nest Hadronn
- Altamout Creek at Altamout Turnout of South Bay Aqueduct
- Livermore Canal at Patterson
- Beservoit Sacramento River at Collinsville San Pablo Bay at Geockett
- Carquinez Strait at Hartines Suisun Bay at Fittaburg Suisun Bay at Port Chicago
- Spoonbill Creak Butano Creak
- Butano Creek
- Dennistop Creek Suisun Bay at Middle Point
- Pescadero Creek Puristma Creek
- Purtatas Creck
- San Gregorio Creek

CENTEAL COASTAL REGION (No. 3)

- 43 Sations River pear Spreckels
- 43e Selicas River et Paco Robles 436 Nacioiento River noar San Miguel 431 Salitas River near Stadley
- San Anconio River near Pleyto 634
- San Lorenzo River et Big Trees noar Felton Soquel Creek at Soquel 16
- 77 Pajaro Elver near Chittendan 77a San Benito River near Bear Valley
- Fire Station

CENTRAL COASTAL REGION (No. 3) Cont'd

- 63 Carmel River at Robles Del Rio 96 Dras Crock near Morgao Hill
- 204 Bean Creek one mile sant of Felton 203 Beat Creek at Boulder Creek
- 206 Bear Greek four miles cortheast of Boulder Creek 208 Boulder Creek at Boulder Creek
- 209 Branciforia Creek near Sante Cruz
- 210 Clear Creek at Brookdale 211 Fall Greek one-half mile notch of
- Felton
- 213 Kings Creek two miles north of Boulder Cresk 215 Lopping Cresk one mile porth of

- 219 Newell Creek one alle northeast of Ben Lowond
- 226 San Lotenco River at Big Treve 227 San Lorenzo River at Boulder Creck
- 228 San Lorenzo River six miles north nf Boulder Creek 229 San Lorenzo River at Falion
- 230 Sen Lorense River et Sants Cruz
- 232 Two Bar Creck one mile north of Boulder Creek
- 233 Zayante Creek at Fulton

- 235 Layante Creek at Layante 245 Alpante Creek at Layante 245 Alba Greek 246 Blanco Drain into Salinas River 247 Boulder Creek 248 Etanciforte Greek
- 251 Carboners Creek 253 Gazos Creek 254 Harshall Creek 259 Salinas Eiver, mile 9.51
- 260 Solinas River, mile 7.13
- 261 Salinas River, mile 4.65 262 Salings Rivar, mile 3.50
- 263 Satinas River, mile 1.70 264 Satinas River, mile 0.00
- 266 Mattchouse Creck

CENTRAL VALLEY REGION (No. 5)

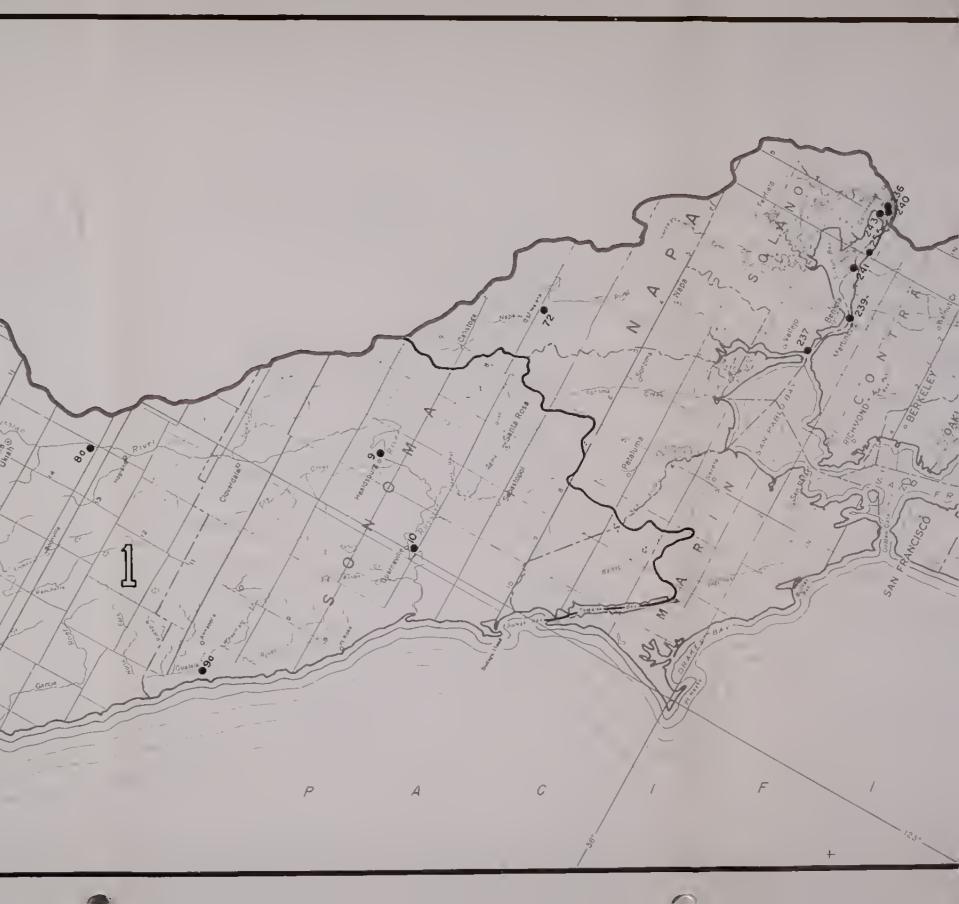
- 207 Eathany Forebay at South Bay Pumping Plant

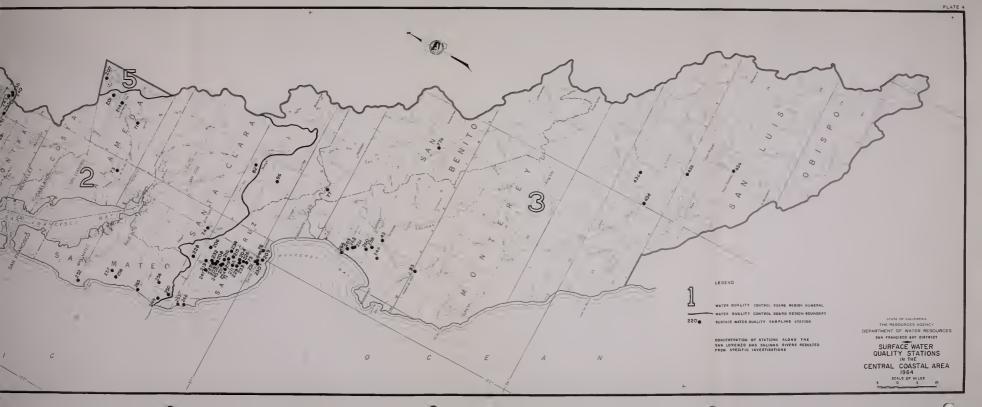
6.0

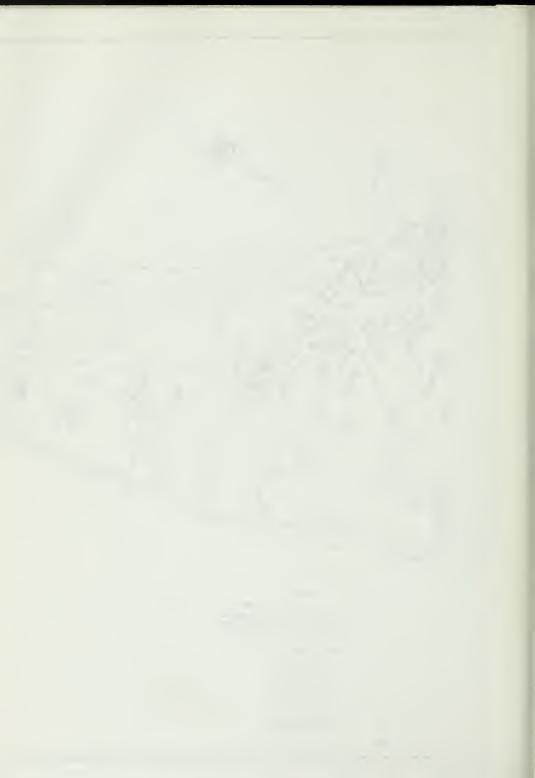
Q Critter of

0

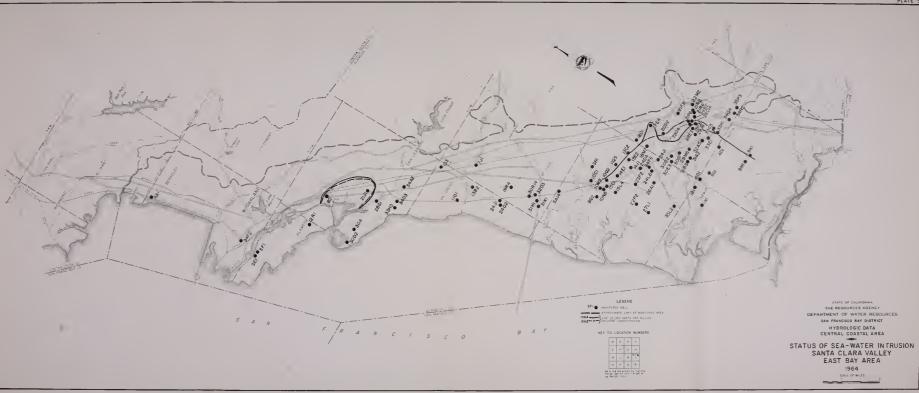
~


S


0


0

- Smelt


~

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL

MAR 1 4 1374 MAY 21 REC'D

LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS

Book Slip-25m-6,'66(G3855s4)458

№ 482510 California. Dept.	TC824 C2
of Water Resources. Bulletin.	A2 no.130:64
PHYSICAL SCIENCES LIBRARY	v.3 c.2
LIBRARY UNIVERSITY OF CALIFO	RNIA

482510 California. Dept. of Water Resources. Bulletin.	Call Number: TC824 C2 A2 no.130:64 v.3

